Advertisement

Holographic charge oscillations

  • Mike Blake
  • Aristomenis Donos
  • David Tong
Open Access
Regular Article - Theoretical Physics

Abstract

The Reissner-Nordström black hole provides the prototypical description of a holographic system at finite density. We study the response of this system to the presence of a local, charged impurity. Below a critical temperature, the induced charge density, which screens the impurity, exhibits oscillations. These oscillations can be traced to the singularities in the density-density correlation function moving in the complex momentum plane. At finite temperature, the oscillations are very similar to the Friedel oscillations seen in Fermi liquids. However, at zero temperature the oscillations in the black hole background remain exponentially damped, while Friedel oscillations relax to a power-law.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010) 151602 [arXiv:1006.3794] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    L. Huijse and S. Sachdev, Fermi surfaces and gauge-gravity duality, Phys. Rev. D 84 (2011) 026001 [arXiv:1104.5022] [INSPIRE].ADSGoogle Scholar
  4. [4]
    S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE].
  5. [5]
    M. Edalati, J.I. Jottar and R.G. Leigh, Shear modes, criticality and extremal black holes, JHEP 04 (2010) 075 [arXiv:1001.0779] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    M. Edalati, J.I. Jottar and R.G. Leigh, Holography and the sound of criticality, JHEP 10 (2010) 058 [arXiv:1005.4075] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    S.A. Hartnoll and E. Shaghoulian, Spectral weight in holographic scaling geometries, JHEP 07 (2012) 078 [arXiv:1203.4236] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    N. Iqbal, H. Liu and M. Mezei, Semi-local quantum liquids, JHEP 04 (2012) 086 [arXiv:1105.4621] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R.J. Anantua, S.A. Hartnoll, V.L. Martin and D.M. Ramirez, The Pauli exclusion principle at strong coupling: Holographic matter and momentum space, JHEP 03 (2013) 104 [arXiv:1210.1590] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Kulaxizi and A. Parnachev, Holographic responses of fermion matter, Nucl. Phys. B 815 (2009) 125 [arXiv:0811.2262] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    M. Goykhman, A. Parnachev and J. Zaanen, Fluctuations in finite density holographic quantum liquids, JHEP 10 (2012) 045 [arXiv:1204.6232] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    V.G.M. Puletti, S. Nowling, L. Thorlacius and T. Zingg, Friedel oscillations in holographic metals, JHEP 01 (2012) 073 [arXiv:1110.4601] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  13. [13]
    J. Polchinski and E. Silverstein, Large-density field theory, viscosity and ‘2k Fsingularities from string duals, Class. Quant. Grav. 29 (2012) 194008 [arXiv:1203.1015] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  14. [14]
    T. Faulkner and N. Iqbal, Friedel oscillations and horizon charge in 1D holographic liquids, JHEP 07 (2013) 060 [arXiv:1207.4208] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Bolognesi and D. Tong, Monopoles and holography, JHEP 01 (2011) 153 [arXiv:1010.4178] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    S. Sachdev, Compressible quantum phases from conformal field theories in 2+1 dimensions, Phys. Rev. D 86 (2012) 126003 [arXiv:1209.1637] [INSPIRE].ADSGoogle Scholar
  17. [17]
    N. Iqbal, Monopole correlations in holographically flavored liquids, arXiv:1409.5467 [INSPIRE].
  18. [18]
    G. Horowitz, N. Iqbal, J. Santos and B. Way, Hovering black holes from charged defects, to appear.Google Scholar
  19. [19]
    D. Bak, A. Karch and L.G. Yaffe, Debye screening in strongly coupled N = 4 supersymmetric Yang-Mills plasma, JHEP 08 (2007) 049 [arXiv:0705.0994] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    D.-F. Hou, J.-R. Li, H. Liu and H.-C. Ren, The momentum analyticity of two-point correlators from perturbation theory and AdS/CFT, JHEP 07 (2010) 042 [arXiv:1003.5462] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    L. Liu, X.-M. Cao and H. Liu, Static dielectric function and interaction potential in strong coupling with AdS/CFT, Commun. Theor. Phys. 62 (2014) 61 [arXiv:1309.7523] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    J. Diaz-Alonso, A. Perez and H.D. Sivak, Screening effects in relativistic models of dense matter at finite temperature, Prog. Theor. Phys. 105 (2001) 961 [hep-ph/9803344] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    H.D. Sivak, A. Perez and J. Diaz-Alonso, Complex poles and oscillatory screened potential in QED plasmas, hep-ph/0106032 [INSPIRE].
  25. [25]
    S.A. Hartnoll and D.M. Hofman, Locally critical resistivities from Umklapp scattering, Phys. Rev. Lett. 108 (2012) 241601 [arXiv:1201.3917] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Donos and S.A. Hartnoll, Universal linear in temperature resistivity from black hole superradiance, Phys. Rev. D 86 (2012) 124046 [arXiv:1208.4102] [INSPIRE].ADSGoogle Scholar
  28. [28]
    C. Nayak and F. Wilczek, Renormalization group approach to low temperature properties of a non-Fermi liquid metal, Nucl. Phys. B 430 (1994) 534 [cond-mat/9408016] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    B. L. Altshuler, L. B. Ioffe, and A. J. Millis, Low-energy properties of fermions with singular interactions, Phys. Rev. B 50 (1994) 14048 [cond-mat/9406024].
  30. [30]
    D.F. Mross, J. McGreevy, H. Liu and T. Senthil, A controlled expansion for certain non-Fermi liquid metals, Phys. Rev. B 82 (2010) 045121 [arXiv:1003.0894] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A.L. Fitzpatrick, G. Torroba and H. Wang, Aspects of renormalization in finite density field theory, arXiv:1410.6811 [INSPIRE].
  32. [32]
    A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP 04 (2014) 040 [arXiv:1311.3292] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. Nakamura, H. Ooguri and C.-S. Park, Gravity dual of spatially modulated phase, Phys. Rev. D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].ADSGoogle Scholar
  34. [34]
    A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140 [arXiv:1106.2004] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  35. [35]
    A. Donos and J.P. Gauntlett, Holographic charge density waves, Phys. Rev. D 87 (2013) 126008 [arXiv:1303.4398] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUnited Kingdom
  2. 2.Centre for Particle Theory, Department of Mathematical SciencesDurham UniversityDurhamUnited Kingdom

Personalised recommendations