Advertisement

The so-Kazama-Suzuki models at large level

Open Access
Regular Article - Theoretical Physics

Abstract

The large level limit of the \( \mathcal{N} \) = 2 SO(2N) Kazama-Suzuki coset models is argued to be equivalent to the orbifold of 4N free fermions and bosons by the Lie group SO(2N) × SO(2). In particular, it is shown that the untwisted sector of the continuous orbifold accounts for a certain closed subsector of the coset theory. Furthermore, the ground states of the twisted sectors are identified with specific coset representations, and this identification is checked by various independent arguments.

Keywords

Conformal and W Symmetry Higher Spin Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    M.R. Gaberdiel and R. Gopakumar, Higher Spins & Strings, JHEP 11 (2014) 044 [arXiv:1406.6103] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    M.R. Gaberdiel and R. Gopakumar, Large-N = 4 Holography, JHEP 09 (2013) 036 [arXiv:1305.4181] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T. Creutzig, Y. Hikida and P.B. Ronne, Extended higher spin holography and Grassmannian models, JHEP 11 (2013) 038 [arXiv:1306.0466] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  5. [5]
    C. Candu and C. Vollenweider, On the coset duals of extended higher spin theories, JHEP 04 (2014) 145 [arXiv:1312.5240] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M.R. Gaberdiel and C. Peng, The symmetry of large \( \mathcal{N} \) = 4 holography, JHEP 05 (2014) 152 [arXiv:1403.2396] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Beccaria, C. Candu and M.R. Gaberdiel, The large-N = 4 superconformal W algebra, JHEP 06 (2014) 117 [arXiv:1404.1694] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 Dual for Minimal Model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].ADSGoogle Scholar
  9. [9]
    T. Creutzig, Y. Hikida and P.B. Ronne, Higher spin AdS 3 supergravity and its dual CFT, JHEP 02 (2012) 109 [arXiv:1111.2139] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  10. [10]
    M.R. Gaberdiel and P. Suchanek, Limits of Minimal Models and Continuous Orbifolds, JHEP 03 (2012) 104 [arXiv:1112.1708] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Y. Kazama and H. Suzuki, New N = 2 Superconformal Field Theories and Superstring Compactification, Nucl. Phys. B 321 (1989) 232 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    M.R. Gaberdiel and M. Kelm, The continuous orbifold of \( \mathcal{N} \) = 2 minimal model holography, JHEP 08 (2014) 084 [arXiv:1406.2345] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Fredenhagen and C. Restuccia, The geometry of the limit of N = 2 minimal models, J. Phys. A 46 (2013) 045402 [arXiv:1208.6136] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  15. [15]
    C. Restuccia, Limit theories and continuous orbifolds, arXiv:1310.6857 [INSPIRE].
  16. [16]
    S. Fredenhagen and C. Restuccia, The large level limit of Kazama-Suzuki models, arXiv:1408.0416 [INSPIRE].
  17. [17]
    C. Candu and M.R. Gaberdiel, Supersymmetric holography on AdS 3, JHEP 09 (2013) 071 [arXiv:1203.1939] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  18. [18]
    C. Ahn, The Large-Nt Hooft Limit of Coset Minimal Models, JHEP 10 (2011) 125 [arXiv:1106.0351] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    M.R. Gaberdiel and C. Vollenweider, Minimal Model Holography for SO(2N), JHEP 08 (2011) 104 [arXiv:1106.2634] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    C. Candu, M.R. Gaberdiel, M. Kelm and C. Vollenweider, Even spin minimal model holography, JHEP 01 (2013) 185 [arXiv:1211.3113] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    T. Creutzig and A.R. Linshaw, Cosets of affine vertex algebras inside larger structures, arXiv:1407.8512 [INSPIRE].
  22. [22]
    L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on Orbifolds, Nucl. Phys. B 261 (1985) 678 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    D. Gepner, Field Identification in Coset Conformal Field Theories, Phys. Lett. B 222 (1989) 207 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    G.W. Moore and N. Seiberg, Taming the Conformal Zoo, Phys. Lett. B 220 (1989) 422 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    P. Di Francesco, P. Matthieu and D. Sénéchal, Conformal Field Theory, Springer Graduate Texts in Contemporary Physics, Springer (1997).Google Scholar
  26. [26]
    C. Tsukamoto, Spectra of Laplace-Beltrami operators on SO(2n + 2)/SO(2) × SO(n) and Sp(n + 1)/Sp(1) × Sp(n), Osaka J. Math. 2 (1981) 407.MATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Institut für Theoretische Physik, ETH ZürichZürichSwitzerland

Personalised recommendations