Infrared behaviour of the one-loop scattering equations and supergravity integrands

Open Access
Regular Article - Theoretical Physics

Abstract

The recently introduced ambitwistor string led to a striking proposal for one-loop maximal supergravity amplitudes, localised on the solutions of the ambitwistor one-loop scattering equations. However, these amplitudes have not been explicitly analysed, due to the apparent complexity of the equations that determine the localisation. In this paper we propose an analytic solution to the four-point one-loop scattering equations in the infrared (IR) regime of the amplitude. Using this solution, we compute the ambitwistor integrand and demonstrate that it correctly reproduces the four-graviton integrand in the IR regime. This solution qualitatively extends to n points. To conclude, we explain that the ambitwistor one-loop scattering equations actually correspond to the standard Gross & Mende saddle point.

Keywords

Superstrings and Heterotic Strings Supergravity Models Sigma Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].ADSGoogle Scholar
  2. [2]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    F. Cachazo, S. He and E.Y. Yuan, Scattering in three dimensions from rational maps, JHEP 10 (2013) 141 [arXiv:1306.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP 07 (2014) 048 [arXiv:1311.2564] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T. Adamo, E. Casali and D. Skinner, Ambitwistor strings and the scattering equations at one loop, JHEP 04 (2014) 104 [arXiv:1312.3828] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    C. Kalousios, Massless scattering at special kinematics as Jacobi polynomials, J. Phys. A 47 (2014) 215402 [arXiv:1312.7743] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  7. [7]
    S. Weinzierl, On the solutions of the scattering equations, JHEP 04 (2014) 092 [arXiv:1402.2516] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    L. Dolan and P. Goddard, The polynomial form of the scattering equations, JHEP 07 (2014) 029 [arXiv:1402.7374] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    Y. Geyer, A.E. Lipstein and L.J. Mason, Ambitwistor strings in four dimensions, Phys. Rev. Lett. 113 (2014) 081602 [arXiv:1404.6219] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    D.J. Gross and P.F. Mende, String theory beyond the Planck scale, Nucl. Phys. B 303 (1988) 407 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    T. Adamo, Worldsheet factorization for twistor-strings, JHEP 04 (2014) 080 [arXiv:1310.8602] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Badger, N.E.J. Bjerrum-Bohr and P. Vanhove, Simplicity in the structure of QED and gravity amplitudes, JHEP 02 (2009) 038 [arXiv:0811.3405] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    D. Mumford, Tata lectures on theta. I, Birkhäuser Boston Inc., Boston MA U.S.A. (1983).Google Scholar
  14. [14]
    M.B. Green, J. Schwarz and E. Witten, Superstring theory. Vol. 1: introduction, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge U.K. (1987).Google Scholar
  15. [15]
    M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 supergravity as limits of string theories, Nucl. Phys. B 198 (1982) 474 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    E. D’Hoker and D.H. Phong, The geometry of string perturbation theory, Rev. Mod. Phys. 60 (1988) 917 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    F. Cachazo, S. He and E.Y. Yuan, Einstein-Yang-Mills scattering amplitudes from scattering equations, JHEP 01 (2015) 121 [arXiv:1409.8256] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    L. Dolan and P. Goddard, Proof of the formula of Cachazo, He and Yuan for Yang-Mills tree amplitudes in arbitrary dimension, JHEP 05 (2014) 010 [arXiv:1311.5200] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    F. Cachazo and H. Gomez, Scattering equations, in Strings 2014 conference, Princeton NJ U.S.A. June 2014.Google Scholar
  20. [20]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    R. Monteiro and D. O’Connell, The kinematic algebras from the scattering equations, JHEP 03 (2014) 110 [arXiv:1311.1151] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    S.G. Naculich, Scattering equations and virtuous kinematic numerators and dual-trace functions, JHEP 07 (2014) 143 [arXiv:1404.7141] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    S.G. Naculich, Scattering equations and BCJ relations for gauge and gravitational amplitudes with massive scalar particles, JHEP 09 (2014) 029 [arXiv:1407.7836] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    E.Y. Yuan, α -expansion of open string disk integrals via Mellin transformations, Nucl. Phys. B 891 (2015) 296 [arXiv:1402.1066] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, P. Tourkine and P. Vanhove, Scattering equations and string theory amplitudes, Phys. Rev. D 90 (2014) 106002 [arXiv:1403.4553] [INSPIRE].ADSGoogle Scholar
  27. [27]
    T. Adamo, E. Casali and D. Skinner, A worldsheet theory for supergravity, JHEP 02 (2015) 116 [arXiv:1409.5656] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    E. Witten, Parity invariance for strings in twistor space, Adv. Theor. Math. Phys. 8 (2004) 779 [hep-th/0403199] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    D. Fairlie and D. Roberts, unpublished notes.Google Scholar
  30. [30]
    G. Dvali, C. Gomez, R.S. Isermann, D. Lüst and S. Stieberger, Black hole formation and classicalization in ultra-Planckian 2 → N scattering, Nucl. Phys. B 893 (2015) 187 [arXiv:1409.7405] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    G. Dvali, G.F. Giudice, C. Gomez and A. Kehagias, UV-completion by classicalization, JHEP 08 (2011) 108 [arXiv:1010.1415] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  32. [32]
    C.R. Mafra and O. Schlotterer, The structure of N-point one-loop open superstring amplitudes, JHEP 08 (2014) 099 [arXiv:1203.6215] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    C.R. Mafra and O. Schlotterer, Towards one-loop SYM amplitudes from the pure spinor BRST cohomology, Fortsch. Phys. 63 (2015) 105 [arXiv:1410.0668] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    C.R. Mafra and O. Schlotterer, Cohomology foundations of one-loop amplitudes in pure spinor superspace, arXiv:1408.3605 [INSPIRE].
  35. [35]
    C.R. Mafra and O. Schlotterer, Multiparticle SYM equations of motion and pure spinor BRST blocks, JHEP 07 (2014) 153 [arXiv:1404.4986] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-point superstring disk amplitude I. Pure spinor computation, Nucl. Phys. B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-point superstring disk amplitude II. Amplitude and hypergeometric function structure, Nucl. Phys. B 873 (2013) 461 [arXiv:1106.2646] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ numerators from pure spinors, JHEP 07 (2011) 092 [arXiv:1104.5224] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Theoretical PhysicsCambridgeUnited Kingdom

Personalised recommendations