Two-twistor particle models and free massive higher spin fields

  • J. A. de Azcárraga
  • S. Fedoruk
  • J. M. Izquierdo
  • J. Lukierski
Open Access
Regular Article - Theoretical Physics

Abstract

We present D = 3 and D = 4 world-line models for massive particles moving in a new type of enlarged spacetime, with D−1 additional vector coordinates, which after quantization lead to towers of massive higher spin (HS) free fields. Two classically equivalent formulations are presented: one with a hybrid spacetime/bispinor variables and a second described by a free two-twistor dynamics with constraints. After first quantization in the D = 3 and D = 4 cases, the wave functions satisfying a massive version of Vasiliev’s free unfolded equations are given as functions on the SL(2, ℝ) and SL(2, ℂ) group manifolds respectively, which describe arbitrary on-shell momenta and spin degrees of freedom. Further we comment on the D = 6 case, and possible supersymmetric extensions are mentioned as well. Finally, the description of interactions and the AdS/CFT duality are briefly considered for massive HS fields.

Keywords

Field Theories in Lower Dimensions Higher Spin Symmetry Extended Supersymmetry Space-Time Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    C. Fronsdal, Massless particles, orthosymlectic symmetry and another Type of Kaluza-Klein theory in Mathematical Physics Studies. Vol. 8: Essays on Supersymmetry, Reidel, Dordrecht Netherlands (1986).Google Scholar
  2. [2]
    I.A. Bandos and J. Lukierski, Tensorial central charges and new superparticle models with fundamental spinor coordinates, Mod. Phys. Lett. A 14 (1999) 1257 [hep-th/9811022] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    I.A. Bandos, J. Lukierski and D.P. Sorokin, Superparticle models with tensorial central charges, Phys. Rev. D 61 (2000) 045002 [hep-th/9904109] [INSPIRE].ADSGoogle Scholar
  4. [4]
    M.A. Vasiliev, Conformal higher spin symmetries of 4d massless supermultiplets and osp(L, 2M) invariant equations in generalized (super)space, Phys. Rev. D 66 (2002) 066006 [hep-th/0106149].ADSGoogle Scholar
  5. [5]
    M. Plyushchay, D. Sorokin and M. Tsulaia, Higher spins from tensorial charges and OSp(N|2n) symmetry, JHEP 04 (2003) 013 [hep-th/0301067] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Fedoruk and E. Ivanov, Master higher-spin particle, Class. Quant. Grav. 23 (2006) 5195 [hep-th/0604111] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    R. Penrose and M.A.H. MacCallum, Twistor theory: an approach to the quantization of fields and space-time, Phys. Rept. 6 (1972) 241 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T. Shirafuji, Lagrangian mechanics of massless particles with spin, Prog. Theor. Phys. 70 (1983) 18 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  9. [9]
    C. Fronsdal, Massless fields with integer spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].ADSGoogle Scholar
  10. [10]
    D. Sorokin, Introduction to the classical theory of higher spins, AIP Conf. Proc. 767 (2005) 172 [hep-th/0405069] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  11. [11]
    A. Jevicki, K. Jin and Q. Ye, Collective dipole model of AdS/CFT and higher spin gravity, J. Phys. A 44 (2011) 465402 [arXiv:1106.3983] [INSPIRE].ADSMATHGoogle Scholar
  12. [12]
    R. de Mello Koch, A. Jevicki, J.P. Rodrigues and J. Yoon, Holography as a gauge phenomenon in higher spin duality, JHEP 01 (2015) 055 [arXiv:1408.1255] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    A.K.H. Bengtsson, I. Bengtsson, M. Cederwall and N. Linden, Particles, superparticles and twistors, Phys. Rev. D 36 (1987) 1766 [INSPIRE].ADSGoogle Scholar
  14. [14]
    I. Bengtsson and M. Cederwall, Particles, twistors and the division algebras, Nucl. Phys. B 302 (1988) 81 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Tits, Lecture Notes in Mathematics. Vol. 40: Tabellen zu den einfachen Lie-Gruppen und ihren Darstellungen, Springer-Verlag, Berlin Germany (1967).Google Scholar
  16. [16]
    A. Ferber, Supertwistors and conformal supersymmetry, Nucl. Phys. B 132 (1978) 55 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Y. Eisenberg, Supertwistors and SuperPoincaré invariant actions for all linearized extended supersymmetric theories in four-dimensions, Mod. Phys. Lett. A 4 (1989) 195 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Y. Eisenberg and S. Solomon, (Super)field theories from (super)twistors, Phys. Lett. B 220 (1989) 562.ADSCrossRefGoogle Scholar
  19. [19]
    M.A. Vasiliev, Consistent equations for interacting massless fields of all spins in the first order in curvatures, Annals Phys. 190 (1989) 59 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M.A. Vasiliev, Algebraic aspects of the higher spin problem, Phys. Lett. B 257 (1991) 111 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3+1)-dimensions, Phys. Lett. B 285 (1992) 225.ADSCrossRefGoogle Scholar
  22. [22]
    M.A. Vasiliev, Relativity, causality, locality, quantization and duality in the Sp(2M) invariant generalized space-time, in Multiple facets of quantization and supersymmetry, Michael Marinov Memorial Volume, M. Olshanetsky and A. Vainshtein eds., World Scientific, Singapore (2002) [hep-th/0111119] [INSPIRE].
  23. [23]
    O.A. Gelfond and M.A. Vasiliev, Higher rank conformal fields in the Sp(2M) symmetric generalized space-time, Theor. Math. Phys. 145 (2005) 1400 [hep-th/0304020] [INSPIRE].CrossRefMATHGoogle Scholar
  24. [24]
    O.A. Gelfond, E.D. Skvortsov and M.A. Vasiliev, Higher spin conformal currents in Minkowski space, Theor. Math. Phys. 154 (2008) 294 [hep-th/0601106] [INSPIRE].CrossRefMATHGoogle Scholar
  25. [25]
    O.A. Gelfond and M.A. Vasiliev, Unfolded equations for current interactions of 4d massless fields as a free system in mixed dimensions, arXiv:1012.3143 [INSPIRE].
  26. [26]
    M.A. Vasiliev, Holography, unfolding and higher-spin theory, J. Phys. A 46 (2013) 214013 [arXiv:1203.5554] [INSPIRE].ADSMATHGoogle Scholar
  27. [27]
    M.A. Vasiliev, Unfolded representation for relativistic equations in (2 + 1) anti-de Sitter space, Class. Quant. Grav. 11 (1994) 649 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A.K.H. Bengtsson, I. Bengtsson and L. Brink, Cubic interaction terms for arbitrary spin, Nucl. Phys. B 227 (1983) 31 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    F.A. Berends, G.J.H. Burgers and H. van Dam, On the theoretical problems in constructing interactions involving higher spin massless particles, Nucl. Phys. B 260 (1985) 295 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    V.E. Didenko and E.D. Skvortsov, Elements of Vasiliev theory, arXiv:1401.2975 [INSPIRE].
  31. [31]
    M.A. Vasiliev, Higher-spin theory and space-time metamorphoses, Lect. Notes Phys. 892 (2015) 227 [arXiv:1404.1948] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A.V. Barabanshchikov, S.F. Prokushkin and M.A. Vasiliev, Free equations for massive matter fields in (2 + 1)-dimensional anti-de Sitter space from deformed oscillator algebra, Theor. Math. Phys. 110 (1997) 295 [Teor. Mat. Fiz. 110N3 (1997) 372] [hep-th/9609034] [INSPIRE].
  33. [33]
    S.F. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3 − D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    O.V. Shaynkman and M.A. Vasiliev, Scalar field in any dimension from the higher spin gauge theory perspective, Theor. Math. Phys. 123 (2000) 683 [hep-th/0003123] [INSPIRE].CrossRefMATHGoogle Scholar
  35. [35]
    Y. Zinoviev, Frame-like gauge invariant formulation for massive high spin particles, Nucl. Phys. B 808 (2009) 185 [arXiv:0808.1778] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  36. [36]
    N. Boulanger, C. Iazeolla and P. Sundell, Unfolding mixed-symmetry fields in AdS and the BMV conjecture: I. General formalism, JHEP 07 (2009) 013 [arXiv:0812.3615] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    D.S. Ponomarev and M.A. Vasiliev, Frame-like action and unfolded formulation for massive higher-spin fields, Nucl. Phys. B 839 (2010) 466 [arXiv:1001.0062] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  38. [38]
    N. Boulanger, D. Ponomarev, E. Sezgin and P. Sundell, New unfolded higher spin systems in AdS 3, arXiv:1412.8209 [INSPIRE].
  39. [39]
    S. Fedoruk and V.G. Zima, Bitwistor formulation of massive spinning particle, J. Kharkov Univ. 585 (2003) 39 [hep-th/0308154] [INSPIRE].Google Scholar
  40. [40]
    S. Fedoruk and V.G. Zima, Bitwistor formulation of the spinning particle, in the Proceedings of the Supersymmetry and Quantum Symmetries International Workshop, Dubna, Russian Federation, 24-29 July, 2003 [hep-th/0401064].
  41. [41]
    S. Fedoruk, A. Frydryszak, J. Lukierski and C. Miquel-Espanya, Extension of the Shirafuji model for massive particles with spin, Int. J. Mod. Phys. A 21 (2006) 4137 [hep-th/0510266] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  42. [42]
    J.A. de Azcárraga, J.M. Izquierdo and J. Lukierski, Supertwistors, massive superparticles and κ-symmetry, JHEP 01 (2009) 041 [arXiv:0808.2155] [INSPIRE].CrossRefMATHGoogle Scholar
  43. [43]
    L. Mezincescu, A.J. Routh and P.K. Townsend, Supertwistors and massive particles, Annals Phys. 346 (2014) 66 [arXiv:1312.2768] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  44. [44]
    K.P. Tod, Some symplectic forms arising in twistor theory, Rept. Math. Phys. 11 (1977) 339 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    Z. Perjés, Twistor variables of relativistic mechanics, Phys. Rev. D 11 (1975) 2031 [INSPIRE].ADSGoogle Scholar
  46. [46]
    Z. Perjés, Unitary space of particle internal states, Phys. Rev. D 20 (1979) 1857.ADSGoogle Scholar
  47. [47]
    L.P. Hughston, Lecture Notes In Physics. Vol. 97: Twistors and particles, Berlin Germany (1979).Google Scholar
  48. [48]
    A. Bette, On a point-like relativistic and spinning particle, J. Math. Phys. 25 (1984) 2456.ADSCrossRefMATHGoogle Scholar
  49. [49]
    A. Bette, Directly interacting massless particles: A Twistor approach, J. Math. Phys. 37 (1996) 1724 [hep-th/9601017] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  50. [50]
    A. Bette, J.A. de Azcárraga, J. Lukierski and C. Miquel-Espanya, Massive relativistic particle model with spin and electric charge from two twistor dynamics, Phys. Lett. B 595 (2004) 491 [hep-th/0405166] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  51. [51]
    J.A. de Azcárraga, A. Frydryszak, J. Lukierski and C. Miquel-Espanya, Massive relativistic particle model with spin from free two-twistor dynamics and its quantization, Phys. Rev. D 73 (2006) 105011 [hep-th/0510161] [INSPIRE].ADSGoogle Scholar
  52. [52]
    S. Fedoruk and J. Lukierski, Massive twistor particle with spin generated by Souriau-Wess-Zumino term and its quantization, Phys. Lett. B 733 (2014) 309 [arXiv:1403.4127] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  53. [53]
    L.C. Biedenharn, H.W. Braden, P. Truini and H. van Dam, Relativistic wavefunctions on spinor spaces, J. Phys. A 21 (1988) 3593.ADSMATHGoogle Scholar
  54. [54]
    E. Sokatchev, Light cone harmonic superspace and its applications, Phys. Lett. B 169 (1986) 209.ADSCrossRefGoogle Scholar
  55. [55]
    E. Sokatchev, Harmonic superparticle, Class. Quant. Grav. 4 (1987) 237 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    F. Delduc, S. Kalitsyn and E. Sokatchev, Learning the ABC of light cone harmonic space, Class. Quant. Grav. 6 (1989) 1561 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  57. [57]
    R. Jackiw and V.P. Nair, Relativistic wave equations for anyons, Phys. Rev. D 43 (1991) 1933 [INSPIRE].ADSGoogle Scholar
  58. [58]
    R. Jackiw, Higher symmetries in lower dimensional models, NATO ASI C 409 (1993) 289.MATHGoogle Scholar
  59. [59]
    D.P. Sorokin and D.V. Volkov, (Anti)commuting spinors and supersymmetric dynamics of semions, Nucl. Phys. B 409 (1993) 547 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  60. [60]
    J.L. Cortés and M.S. Plyushchay, Anyons: Minimal and extended formulations, Mod. Phys. Lett. A 10 (1995) 409 [hep-th/9405181] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  61. [61]
    J.L. Cortés and M.S. Plyushchay, Anyons as spinning particles, Int. J. Mod. Phys. A 11 (1996) 3331 [hep-th/9505117].ADSCrossRefMATHGoogle Scholar
  62. [62]
    N.J. Vilenkin, Translations of Mathematical Monographs. Vol. 22: Special functions and the theory of group representations, American Mathematical Society, Providence U.S.A. (1968).Google Scholar
  63. [63]
    V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. Math. 48 (1947) 568.CrossRefMATHGoogle Scholar
  64. [64]
    W. Rühl, The Lorentz group and harmonic analysis, W.A. Benjamin, San Francisco U.S.A. (1970), pg. 299.Google Scholar
  65. [65]
    I.A. Bandos, Superparticle in Lorentz harmonic superspace (in Russian), Sov. J. Nucl. Phys. 51 (1990) 906 [INSPIRE].Google Scholar
  66. [66]
    F. Delduc, A. Galperin and E. Sokatchev, Lorentz harmonic (super)fields and (super)particles, Nucl. Phys. B 368 (1992) 143 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    S. Fedoruk and V.G. Zima, Covariant quantization of d = 4 Brink-Schwarz superparticle with Lorentz harmonics, Theor. Math. Phys. 102 (1995) 305 [hep-th/9409117] [INSPIRE].CrossRefMATHGoogle Scholar
  68. [68]
    A.P. Balachandran, G. Marmo, B.S. Skagerstam and A. Stern, Gauge symmetries and fiber bundles: applications to particle dynamics, Lect. Notes Phys. 188 (1983) 1.ADSCrossRefMATHGoogle Scholar
  69. [69]
    L. Schulman, A Path integral for spin, Phys. Rev. 176 (1968) 1558 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    C.A. Orzalesi, Charges and generators of symmetry transformations in quantum field theory, Rev. Mod. Phys. 42 (1970) 381 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  71. [71]
    A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E.S. Sokatchev, Harmonic Superspace, Cambridge University Press, Cambridge U.K. (2001).CrossRefMATHGoogle Scholar
  72. [72]
    I.M. Gelfand, M.I. Graev and N.J. Vilenkin, Generalized functions: fntegral geometry and representation theory, Academic Press, New York U.S.A. (1966).Google Scholar
  73. [73]
    E.-M. Corson, Introduction to tensors, spinors and relativistic wave equations, Blackie and Son, London U.K. (1957).MATHGoogle Scholar
  74. [74]
    S. Weinberg, Feynman rules for any spin, Phys. Rev. 133 (1964) B1318.ADSCrossRefMATHGoogle Scholar
  75. [75]
    J. Lukierski and A. Nowicki, Quaternionic six-dimensional (super)twistor formalism and composite (super)spaces, Mod. Phys. Lett. A 6 (1991) 189 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  76. [76]
    Z. Hasiewicz, P. Morawiec and J. Lukierski, Quaternionic six-dimensional (super)twistor formalism and composite (super)spaces, Phys. Lett. B 130 (1983) 55 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    C. Duval and P.A. Horvathy, Chiral fermions as classical massless spinning particles, Phys. Rev. D 91 (2015) 045013 [arXiv:1406.0718] [INSPIRE].ADSGoogle Scholar
  78. [78]
    J.A. de Azcárraga, J.P. Gauntlett, J.M. Izquierdo and P.K. Townsend, Topological extensions of the supersymmetry algebra for extended objects, Phys. Rev. Lett. 63 (1989) 2443 [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    C. Chryssomalakos, J.A. de Azcárraga, J.M. Izquierdo and J.C. Pérez Bueno, The geometry of branes and extended superspaces, Nucl. Phys. B 567 (2000) 293 [hep-th/9904137] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  80. [80]
    J.A. de Azcárraga and J.M. Izquierdo, Some geometrical aspects of M-theory, Lisbon Conference on Geometry and Physics, Lisbon Portugal (2007), AIP Conf. Proc. 1023 (2008) 57 [INSPIRE].
  81. [81]
    J.A. de Azcárraga and J. Lukierski, Supersymmetric Particles with Internal Symmetries and Central Charges, Phys. Lett. B 113 (1982) 170 [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    J.A. de Azcárraga and J. Lukierski, Gupta-Bleuler quantization of massive superparticle models in D = 6, D = 8 and D = 10, Phys. Rev. D 38 (1988) 509 [INSPIRE].ADSGoogle Scholar
  83. [83]
    E.S. Fradkin and M.A. Vasiliev, Cubic Interaction in Extended Theories of Massless Higher Spin Fields, Nucl. Phys. B 291 (1987) 141 [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    H. van Dam and M.J.G. Veltman, Massive and massless Yang-Mills and gravitational fields, Nucl. Phys. B 22 (1970) 397 [INSPIRE].ADSGoogle Scholar
  85. [85]
    V.I. Zakharov, Linearized gravitation theory and the graviton mass, JETP Lett. 12 (1970) 312 [INSPIRE].ADSGoogle Scholar
  86. [86]
    M. Porrati, No van Dam-Veltman-Zakharov discontinuity in AdS space, Phys. Lett. B 498 (2001) 92 [hep-th/0011152] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  87. [87]
    S. Deser and A. Waldron, (Dis)continuities of massless limits in spin 3/2 mediated interactions and cosmological supergravity, Phys. Lett. B 501 (2001) 134 [hep-th/0012014] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  88. [88]
    V.I. Ogievetsky and I.V. Polubarinov, Interacting field of spin 2 and the Einstein equations, Ann. Phys. (NY) 35 (1965) 167.ADSCrossRefGoogle Scholar
  89. [89]
    E.C.G. Stueckelberg, Interaction energy in electrodynamics and in the field theory of nuclear forces, Helv. Phys. Acta 11 (1938) 225 [INSPIRE].Google Scholar
  90. [90]
    J. Lukierski, Renormalizability of higher-spin theories, Nuovo Cim. 38 (1965) 1407.CrossRefGoogle Scholar
  91. [91]
    H. Ruegg and M. Ruiz-Altaba, The Stueckelberg field, Int. J. Mod. Phys. A 19 (2004) 3265 [hep-th/0304245] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  92. [92]
    R.R. Metsaev, Arbitrary spin conformal fields in (A)dS, Nucl. Phys. B 885 (2014) 734 [arXiv:1404.3712] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  93. [93]
    N. Beisert, M. Bianchi, J.F. Morales and H. Samtleben, Higher spin symmetry and N = 4 SYM, JHEP 07 (2004) 058 [hep-th/0405057] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    M. Bianchi, P.J. Heslop and F. Riccioni, More on La Grande Bouffe, JHEP 08 (2005) 088 [hep-th/0504156] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    M.A. Vasiliev, Multiparticle extension of the higher-spin algebra, Class. Quant. Grav. 30 (2013) 104006 [arXiv:1212.6071] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  96. [96]
    O.A. Gelfond and M.A. Vasiliev, Operator algebra of free conformal currents via twistors, Nucl. Phys. B 876 (2013) 871 [arXiv:1301.3123] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  97. [97]
    M.A. Vasiliev, Extended Higher Spin Superalgebras and Their Realizations in Terms of Quantum Operators, Fortsch. Phys. 36 (1988) 33 [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    S.E. Konstein and M.A. Vasiliev, Extended Higher Spin Superalgebras and Their Massless Representations, Nucl. Phys. B 331 (1990) 475 [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    N. Boulanger, D. Ponomarev, E.D. Skvortsov and M. Taronna, On the uniqueness of higher-spin symmetries in AdS and CFT, Int. J. Mod. Phys. A 28 (2013) 1350162 [arXiv:1305.5180] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  100. [100]
    T.D. Lee, S. Weinberg and B. Zumino, Algebra of Fields, Phys. Rev. Lett. 18 (1967) 1029 [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    J.J. Sakurai, Currents and Mesons, University of Chicago Press, Chicago U.S.A. (1969).Google Scholar
  102. [102]
    M. Flato and C. Fronsdal, One Massless Particle Equals Two Dirac Singletons: Elementary Particles in a Curved Space. 6., Lett. Math. Phys. 2 (1978) 421 [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    J.-M. Souriau, Structure des systèmes dynamiques, Dunod, Paris France (1970) [Progress in Mathematics. Vol. 149: Structure of dynamical systems: a symplectic view of physics, Boston U.S.A. (1997)].Google Scholar
  104. [104]
    H.P. Künzle, Canonical dynamics of spinning particles in gravitational and electromagnetic fields, J. Math. Phys. 13 (1972) 739 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  105. [105]
    A. Pashnev and M. Tsulaia, Description of the higher massless irreducible integer spins in the BRST approach, Mod. Phys. Lett. A 13 (1998) 1853 [hep-th/9803207] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  106. [106]
    C. Burdik, A. Pashnev and M. Tsulaia, On the Mixed symmetry irreducible representations of the Poincaré group in the BRST approach, Mod. Phys. Lett. A 16 (2001) 731 [hep-th/0101201] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  107. [107]
    I.L. Buchbinder, A. Pashnev and M. Tsulaia, Lagrangian formulation of the massless higher integer spin fields in the AdS background, Phys. Lett. B 523 (2001) 338 [hep-th/0109067] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  108. [108]
    I.L. Buchbinder, V.A. Krykhtin and M. Tsulaia, Lagrangian formulation of massive fermionic higher spin fields on a constant electromagnetic background, arXiv:1501.03278 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • J. A. de Azcárraga
    • 1
  • S. Fedoruk
    • 2
    • 3
  • J. M. Izquierdo
    • 4
  • J. Lukierski
    • 5
  1. 1.Department of Theoretical Physics and IFIC (CSIC-UVEG)Valencia UniversityBurjassotSpain
  2. 2.Bogolubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  3. 3.Department of Theoretical PhysicsTomsk State Pedagogical UniversityTomskRussia
  4. 4.Department of Theoretical PhysicsValladolid UniversityValladolidSpain
  5. 5.Institute of Theoretical PhysicsWroclaw UniversityWroclawPoland

Personalised recommendations