Irreducible background and interference effects for Higgs-boson production in association with a top-quark pair

Open Access
Regular Article - Theoretical Physics

Abstract

We present an analysis of Higgs-boson production in association with a top-quark pair at the LHC investigating in particular the final state consisting of four b jets, two jets, one identified charged lepton and missing energy. We consider the Standard Model prediction in three scenarios, the resonant Higgs-boson plus top-quark-pair production, the resonant production of a top-quark pair in association with a b-jet pair and the full process including all non-resonant and interference contributions. By comparing these scenarios we examine the irreducible background for the production rate and several kinematical distributions. With standard selection criteria the irreducible background turns out to be three times as large as the signal. For most observables we find a uniform deviation of eight percent between the scenario requiring two resonant top quarks and the full process. In particular phase-space regions the non-resonant contributions cause larger effects, and we observe shape changes for some distributions. Furthermore we investigate interference effects and find that neglecting interference contributions results in an over-estimate of the total cross-section of five percent.

Keywords

Higgs Physics Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    ATLAS collaboration, Search for the Standard Model Higgs boson produced in association with top quarks in proton-proton collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, ATLAS-CONF-2012-135 (2012).
  4. [4]
    ATLAS collaboration, Search for the standard model Higgs boson produced in association with top quarks and decaying to \( b\overline{b} \) in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2014-011 (2014).
  5. [5]
    ATLAS collaboration, Search for H → γγ produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector, Phys. Lett. B 740 (2015) 222 [arXiv:1409.3122] [INSPIRE].ADSGoogle Scholar
  6. [6]
    CMS collaboration, Search for Higgs boson production in association with top quark pairs in pp collisions, CMS-PAS-HIG-12-025 (2012).
  7. [7]
    CMS collaboration, Search for Higgs boson production in association with a top-quark pair and decaying to bottom quarks or tau leptons, CMS-PAS-HIG-13-019 (2013).
  8. [8]
    CMS collaboration, Search for ttH production in events where H decays to photons at 8 TeV collisions, CMS-PAS-HIG-13-015 (2013).
  9. [9]
    CMS collaboration, Search for the standard model Higgs boson produced in association with a top-quark pair in pp collisions at the LHC, JHEP 05 (2013) 145 [arXiv:1303.0763] [INSPIRE].ADSGoogle Scholar
  10. [10]
    CMS collaboration, Search for the associated production of the Higgs boson with a top-quark pair, JHEP 09 (2014) 087 [Erratum ibid. 1410 (2014) 106] [arXiv:1408.1682] [INSPIRE].
  11. [11]
    R. Raitio and W.W. Wada, Higgs boson production at large transverse momentum in QCD, Phys. Rev. D 19 (1979) 941 [INSPIRE].ADSGoogle Scholar
  12. [12]
    J.N. Ng and P. Zakarauskas, A QCD parton calculation of conjoined production of Higgs bosons and heavy flavors in pp collision, Phys. Rev. D 29 (1984) 876 [INSPIRE].ADSGoogle Scholar
  13. [13]
    Z. Kunszt, Associated production of heavy Higgs boson with top quarks, Nucl. Phys. B 247 (1984) 339 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J.F. Gunion, Associated top anti-top Higgs production as a large source of W H events: implications for Higgs detection in the lepton neutrino gamma gamma final state, Phys. Lett. B 261 (1991) 510 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    W.J. Marciano and F.E. Paige, Associated production of Higgs bosons with \( t\overline{t} \) pairs, Phys. Rev. Lett. 66 (1991) 2433 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    W. Beenakker et al., Higgs radiation off top quarks at the Tevatron and the LHC, Phys. Rev. Lett. 87 (2001) 201805 [hep-ph/0107081] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    W. Beenakker et al., NLO QCD corrections to \( t\overline{t}H \) production in hadron collisions, Nucl. Phys. B 653 (2003) 151 [hep-ph/0211352] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    L. Reina and S. Dawson, Next-to-leading order results for \( t\overline{t}h \) production at the Tevatron, Phys. Rev. Lett. 87 (2001) 201804 [hep-ph/0107101] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Dawson, L.H. Orr, L. Reina and D. Wackeroth, Associated top quark Higgs boson production at the LHC, Phys. Rev. D 67 (2003) 071503 [hep-ph/0211438] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S. Dawson, C. Jackson, L.H. Orr, L. Reina and D. Wackeroth, Associated Higgs production with top quarks at the large hadron collider: NLO QCD corrections, Phys. Rev. D 68 (2003) 034022 [hep-ph/0305087] [INSPIRE].ADSGoogle Scholar
  21. [21]
    R. Frederix et al., Scalar and pseudoscalar Higgs production in association with a top-antitop pair, Phys. Lett. B 701 (2011) 427 [arXiv:1104.5613] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M.V. Garzelli, A. Kardos, C.G. Papadopoulos and Z. Trócsányi, Standard model Higgs boson production in association with a top anti-top pair at NLO with parton showering, Europhys. Lett. 96 (2011) 11001 [arXiv:1108.0387] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, Weak corrections to Higgs hadroproduction in association with a top-quark pair, JHEP 09 (2014) 065 [arXiv:1407.0823] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    Y. Zhang, W.-G. Ma, R.-Y. Zhang, C. Chen and L. Guo, QCD NLO and EW NLO corrections to ttH production with top quark decays at hadron collider, Phys. Lett. B 738 (2014) 1 [arXiv:1407.1110] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to \( t\overline{t}b\overline{b} \) production at the LHC: 1. Quark-antiquark annihilation, JHEP 08 (2008) 108 [arXiv:0807.1248] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to pp\( t\overline{t}b\overline{b} \) + X at the LHC, Phys. Rev. Lett. 103 (2009) 012002 [arXiv:0905.0110] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO wishlist: pp\( t\overline{t}b\overline{b} \), JHEP 09 (2009) 109 [arXiv:0907.4723] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 2. Full hadronic results, JHEP 03 (2010) 021 [arXiv:1001.4006] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  29. [29]
    A. Kardos and Z. Trócsányi, Hadroproduction of \( t\overline{t} \) pair with a \( b\overline{b} \) pair using PowHel, J. Phys. G 41 (2014) 075005 [arXiv:1303.6291] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    F. Cascioli, P. Maierhöfer, N. Moretti, S. Pozzorini and F. Siegert, NLO matching for \( t\overline{t}b\overline{b} \) production with massive b-quarks, Phys. Lett. B 734 (2014) 210 [arXiv:1309.5912] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M.V. Garzelli, A. Kardos and Z. Trócsányi, \( t\overline{t}b\overline{b} \) hadroproduction at NLO accuracy matched with parton shower, PoS(EPS-HEP 2013)253.
  32. [32]
    SM and NLO Multileg Working Group collaboration, T. Binoth et al., The SM and NLO Multileg Working Group: summary report, arXiv:1003.1241 [INSPIRE].
  33. [33]
    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].
  34. [34]
    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].
  35. [35]
    LHC Higgs Cross Section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs Cross Sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
  36. [36]
    R. Kleiss and W.J. Stirling, Top quark production at hadron colliders: some useful formulae, Z. Phys. C 40 (1988) 419.ADSGoogle Scholar
  37. [37]
    R.G. Stuart, Gauge invariance, analyticity and physical observables at the Z0 resonance, Phys. Lett. B 262 (1991) 113 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Aeppli, G.J. van Oldenborgh and D. Wyler, Unstable particles in one loop calculations, Nucl. Phys. B 428 (1994) 126 [hep-ph/9312212] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Actis, A. Denner, L. Hofer, A. Scharf and S. Uccirati, Recursive generation of one-loop amplitudes in the Standard Model, JHEP 04 (2013) 037 [arXiv:1211.6316] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e → 4f ermions + γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504-507] [hep-ph/0505042] [INSPIRE].
  42. [42]
    A. Denner and S. Dittmaier, The complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. Proc. Suppl. 160 (2006) 22 [hep-ph/0605312] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    D.Y. Bardin, A. Leike, T. Riemann and M. Sachwitz, Energy dependent width effects in e + e annihilation near the Z boson pole, Phys. Lett. B 206 (1988) 539 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Jezabek and J.H. Kühn, QCD corrections to semileptonic decays of heavy quarks, Nucl. Phys. B 314 (1989) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Electroweak radiative corrections to e + e W W → 4 fermions in double pole approximation: the RACOONWW approach, Nucl. Phys. B 587 (2000) 67 [hep-ph/0006307] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Denner, S. Dittmaier and L. Hofer, COLLIERA fortran-library for one-loop integrals, PoS(LL2014)071 [arXiv:1407.0087] [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Universität Würzburg, Institut für Theoretische Physik und AstrophysikWürzburgGermany

Personalised recommendations