Advertisement

Renormalization schemes for SFT solutions

Open Access
Regular Article - Theoretical Physics

Abstract

In this paper, we examine the space of renormalization schemes compatible with the Kiermaier and Okawa [1] framework for constructing Open String Field Theory solutions based on marginal operators with singular self-OPEs. We show that, due to freedom in defining the renormalization scheme which tames these singular OPEs, the solutions obtained from the KO framework are not necessarily unique. We identify a multidimensional space of SFT solutions corresponding to a single given marginal operator.

Keywords

Bosonic Strings String Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Kiermaier and Y. Okawa, Exact marginality in open string field theory: A general framework, JHEP 11 (2009) 041 [arXiv:0707.4472] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    M. Kiermaier, Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for marginal deformations in open string field theory, JHEP 01 (2008) 028 [hep-th/0701249] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    M. Schnabl, Comments on marginal deformations in open string field theory, Phys. Lett. B 654 (2007) 194 [hep-th/0701248] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    M. Kiermaier and Y. Okawa, General marginal deformations in open superstring field theory, JHEP 11 (2009) 042 [arXiv:0708.3394] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    M. Kiermaier, Y. Okawa and P. Soler, Solutions from boundary condition changing operators in open string field theory, JHEP 03 (2011) 122 [arXiv:1009.6185] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    C. Maccaferri, A simple solution for marginal deformations in open string field theory, JHEP 05 (2014) 004 [arXiv:1402.3546] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    T. Erler and C. Maccaferri, String Field Theory Solution for Any Open String Background, JHEP 10 (2014) 029 [arXiv:1406.3021] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    E. Fuchs, M. Kroyter and R. Potting, Marginal deformations in string field theory, JHEP 09 (2007) 101 [arXiv:0704.2222] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    S. Inatomi, I. Kishimoto and T. Takahashi, Tachyon Vacuum of Bosonic Open String Field Theory in Marginally Deformed Backgrounds, PTEP 2013 (2013) 023B02 [arXiv:1209.4712] [INSPIRE].Google Scholar
  10. [10]
    I. Kishimoto and T. Takahashi, Gauge Invariant Overlaps for Identity-Based Marginal Solutions, arXiv:1307.1203 [INSPIRE].
  11. [11]
    T. Takahashi and S. Tanimoto, Marginal and scalar solutions in cubic open string field theory, JHEP 03 (2002) 033 [hep-th/0202133] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    E. Coletti, I. Sigalov and W. Taylor, Taming the tachyon in cubic string field theory, JHEP 08 (2005) 104 [hep-th/0505031] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    I. Ellwood, Rolling to the tachyon vacuum in string field theory, JHEP 12 (2007) 028 [arXiv:0705.0013] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    M. Longton, Time-Symmetric Rolling Tachyon Profile, to appear.Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada

Personalised recommendations