Resummation prediction on the jet mass spectrum in one-jet inclusive production at the LHC

  • Ze Long Liu
  • Chong Sheng Li
  • Jian Wang
  • Yan Wang
Open Access
Regular Article - Theoretical Physics

Abstract

We study the factorization and resummation prediction on the jet mass spectrum in one-jet inclusive production at the LHC based on soft-collinear effective theory. The soft function with anti-k T algorithm is calculated at next-to-leading order and its validity is demonstrated by checking the agreement between the expanded leading singular terms with the exact fixed-order result. The large logarithms ln n (m J 2 /p T 2 ) and the global logarithms ln n (s4/p T 2 ) in the process are resummed to all order at next-to-leading logarithmic and next-to-next-to-leading logarithmic level, respectively. The cross section is enhanced by about 23% from the next-to-leading logarithmic level to next-to-next-to- leading logarithmic level. Comparing our resummation predictions with those from Monte Carlo tool PYTHIA and ATLAS data at the 7 TeV LHC, we find that the peak positions of the jet mass spectra agree with those from PYTHIA at parton level, and the predictions of the jet mass spectra with non-perturbative effects are in coincidence with the ATLAS data. We also show the predictions at the future 13 TeV LHC.

Keywords

Jets Hadronic Colliders 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Butterworth, B.E. Cox and J.R. Forshaw, W W scattering at the CERN LHC, Phys. Rev. D 65 (2002) 096014 [hep-ph/0201098] [INSPIRE].ADSGoogle Scholar
  2. [2]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top Tagging: A Method For Identifying Boosted Hadronically Decaying Top Quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle Searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].ADSGoogle Scholar
  5. [5]
    J. Thaler and L.-T. Wang, Strategies to Identify Boosted Tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D. Krohn, J. Thaler and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Gallicchio et al., Multivariate discrimination and the Higgs + W/Z search, JHEP 04 (2011) 069 [arXiv:1010.3698] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Gallicchio and M.D. Schwartz, Seeing in Color: Jet Superstructure, Phys. Rev. Lett. 105 (2010) 022001 [arXiv:1001.5027] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    Y. Cui, Z. Han and M.D. Schwartz, W-jet Tagging: Optimizing the Identification of Boosted Hadronically-Decaying W Bosons, Phys. Rev. D 83 (2011) 074023 [arXiv:1012.2077] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J. Gallicchio and M.D. Schwartz, Quark and Gluon Tagging at the LHC, Phys. Rev. Lett. 107 (2011) 172001 [arXiv:1106.3076] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Altheimer et al., Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S.D. Ellis, A. Hornig, T.S. Roy, D. Krohn and M.D. Schwartz, Qjets: A Non-Deterministic Approach to Tree-Based Jet Substructure, Phys. Rev. Lett. 108 (2012) 182003 [arXiv:1201.1914] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T. Gleisberg et al., SHERPA 1. α: A proof of concept version, JHEP 02 (2004) 056 [hep-ph/0311263] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  17. [17]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  18. [18]
    M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Gieseke et al., Herwig++ 2.5 Release Note, arXiv:1102.1672 [INSPIRE].
  20. [20]
    ATLAS collaboration, Jet mass and substructure of inclusive jets in \( \sqrt{s}=7 \) TeV pp collisions with the ATLAS experiment, JHEP 05 (2012) 128 [arXiv:1203.4606] [INSPIRE].ADSGoogle Scholar
  21. [21]
    T. Becher and M.D. Schwartz, A precise determination of α s from LEP thrust data using effective field theory, JHEP 07 (2008) 034 [arXiv:0803.0342] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    W. M.-Y. Cheung, M. Luke and S. Zuberi, Phase Space and Jet Definitions in SCET, Phys. Rev. D 80 (2009) 114021 [arXiv:0910.2479] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S.D. Ellis, A. Hornig, C. Lee, C.K. Vermilion and J.R. Walsh, Consistent Factorization of Jet Observables in Exclusive Multijet Cross-Sections, Phys. Lett. B 689 (2010) 82 [arXiv:0912.0262] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet Shapes and Jet Algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T.T. Jouttenus, Jet Function with a Jet Algorithm in SCET, Phys. Rev. D 81 (2010) 094017 [arXiv:0912.5509] [INSPIRE].ADSGoogle Scholar
  26. [26]
    R. Kelley, M.D. Schwartz and H.X. Zhu, Resummation of jet mass with and without a jet veto, arXiv:1102.0561 [INSPIRE].
  27. [27]
    R. Kelley, M.D. Schwartz, R.M. Schabinger and H.X. Zhu, Jet Mass with a Jet Veto at Two Loops and the Universality of Non-Global Structure, Phys. Rev. D 86 (2012) 054017 [arXiv:1112.3343] [INSPIRE].ADSGoogle Scholar
  28. [28]
    Y.-T. Chien, R. Kelley, M.D. Schwartz and H.X. Zhu, Resummation of Jet Mass at Hadron Colliders, Phys. Rev. D 87 (2013) 014010 [arXiv:1208.0010] [INSPIRE].ADSGoogle Scholar
  29. [29]
    Y.-T. Chien and I. Vitev, Jet Shape Resummation Using Soft-Collinear Effective Theory, JHEP 12 (2014) 061 [arXiv:1405.4293] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Banfi, M. Dasgupta, K. Khelifa-Kerfa and S. Marzani, Non-global logarithms and jet algorithms in high-pT jet shapes, JHEP 08 (2010) 064 [arXiv:1004.3483] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  31. [31]
    H.-n. Li, Z. Li and C.-P. Yuan, QCD resummation for jet substructures, Phys. Rev. Lett. 107 (2011) 152001 [arXiv:1107.4535] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    H.-n. Li, Z. Li and C.-P. Yuan, QCD resummation for light-particle jets, Phys. Rev. D 87 (2013) 074025 [arXiv:1206.1344] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M. Dasgupta, K. Khelifa-Kerfa, S. Marzani and M. Spannowsky, On jet mass distributions in Z+jet and dijet processes at the LHC, JHEP 10 (2012) 126 [arXiv:1207.1640] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Jet mass spectra in Higgs boson plus one jet at next-to-next-to-leading logarithmic order, Phys. Rev. D 88 (2013) 054031 [arXiv:1302.0846] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A. Banfi, G.P. Salam and G. Zanderighi, Phenomenology of event shapes at hadron colliders, JHEP 06 (2010) 038 [arXiv:1001.4082] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  37. [37]
    A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-Jettiness: An Inclusive Event Shape to Veto Jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    CMS collaboration, Studies of jet mass in dijet and W/Z + jet events, JHEP 05 (2013) 090 [arXiv:1303.4811] [INSPIRE].ADSGoogle Scholar
  40. [40]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  41. [41]
    R. Kelley, J.R. Walsh and S. Zuberi, Abelian Non-Global Logarithms from Soft Gluon Clustering, JHEP 09 (2012) 117 [arXiv:1202.2361] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, hep-ph/9907280 [INSPIRE].
  44. [44]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].ADSGoogle Scholar
  46. [46]
    A. Banfi and M. Dasgupta, Problems in resumming interjet energy flows with k t clustering, Phys. Lett. B 628 (2005) 49 [hep-ph/0508159] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    Y. Delenda, R. Appleby, M. Dasgupta and A. Banfi, On QCD resummation with k(t) clustering, JHEP 12 (2006) 044 [hep-ph/0610242] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    K. Khelifa-Kerfa, Non-global logs and clustering impact on jet mass with a jet veto distribution, JHEP 02 (2012) 072 [arXiv:1111.2016] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  49. [49]
    R. Kelley, J.R. Walsh and S. Zuberi, Disentangling Clustering Effects in Jet Algorithms, arXiv:1203.2923 [INSPIRE].
  50. [50]
    C.W. Bauer, A. Hornig and F.J. Tackmann, Factorization for generic jet production, Phys. Rev. D 79 (2009) 114013 [arXiv:0808.2191] [INSPIRE].ADSGoogle Scholar
  51. [51]
    C.W. Bauer, N.D. Dunn and A. Hornig, Factorization of Boosted Multijet Processes for Threshold Resummation, Phys. Rev. D 82 (2010) 054012 [arXiv:1002.1307] [INSPIRE].ADSGoogle Scholar
  52. [52]
    R. Kelley and M.D. Schwartz, 1-loop matching and NNLL resummation for all partonic 2 to 2 processes in QCD, Phys. Rev. D 83 (2011) 045022 [arXiv:1008.2759] [INSPIRE].ADSGoogle Scholar
  53. [53]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].ADSGoogle Scholar
  54. [54]
    T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory Amplitudes, JHEP 06 (2009) 081 [Erratum ibid. 1311 (2013) 024] [arXiv:0903.1126] [INSPIRE].
  55. [55]
    E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    L.J. Dixon, E. Gardi and L. Magnea, On soft singularities at three loops and beyond, JHEP 02 (2010) 081 [arXiv:0910.3653] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  59. [59]
    T. Becher and M.D. Schwartz, Direct photon production with effective field theory, JHEP 02 (2010) 040 [arXiv:0911.0681] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  60. [60]
    A.V. Manohar, Deep inelastic scattering as x → 1 using soft collinear effective theory, Phys. Rev. D 68 (2003) 114019 [hep-ph/0309176] [INSPIRE].ADSGoogle Scholar
  61. [61]
    T. Becher and M. Neubert, Toward a NNLO calculation of the \( \overline{B}\to {X}_s\gamma \) decay rate with a cut on photon energy. II. Two-loop result for the jet function, Phys. Lett. B 637 (2006) 251 [hep-ph/0603140] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    T. Becher and G. Bell, The gluon jet function at two-loop order, Phys. Lett. B 695 (2011) 252 [arXiv:1008.1936] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    T. Becher and M. Neubert, Threshold resummation in momentum space from effective field theory, Phys. Rev. Lett. 97 (2006) 082001 [hep-ph/0605050] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    T. Becher, M. Neubert and B.D. Pecjak, Factorization and Momentum-Space Resummation in Deep-Inelastic Scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    A.V. Manohar and I.W. Stewart, The Zero-Bin and Mode Factorization in Quantum Field Theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [INSPIRE].ADSGoogle Scholar
  66. [66]
    R. Kelley, M.D. Schwartz, R.M. Schabinger and H.X. Zhu, The two-loop hemisphere soft function, Phys. Rev. D 84 (2011) 045022 [arXiv:1105.3676] [INSPIRE].ADSGoogle Scholar
  67. [67]
    K. Khelifa-Kerfa, Non-global logs and clustering impact on jet mass with a jet veto distribution, JHEP 02 (2012) 072 [arXiv:1111.2016] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  68. [68]
    M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].ADSMATHGoogle Scholar
  69. [69]
    M. Dasgupta and G.P. Salam, Accounting for coherence in interjet E t flow: A case study, JHEP 03 (2002) 017 [hep-ph/0203009] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A. Banfi, G. Marchesini and G. Smye, Away from jet energy flow, JHEP 08 (2002) 006 [hep-ph/0206076] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A. Hornig, C. Lee, I.W. Stewart, J.R. Walsh and S. Zuberi, Non-global Structure of the O(α s2) Dijet Soft Function, JHEP 08 (2011) 054 [arXiv:1105.4628] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  72. [72]
    T. Plehn, Single stop production at hadron colliders, Phys. Lett. B 488 (2000) 359 [hep-ph/0006182] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    T. Han, I. Lewis and T. McElmurry, QCD Corrections to Scalar Diquark Production at Hadron Colliders, JHEP 01 (2010) 123 [arXiv:0909.2666] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  74. [74]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Uncertainties on α s in global PDF analyses and implications for predicted hadronic cross sections, Eur. Phys. J. C 64 (2009) 653 [arXiv:0905.3531] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    R.K. Ellis and J.C. Sexton, QCD Radiative Corrections to Parton Parton Scattering, Nucl. Phys. B 269 (1986) 445 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    T. Becher, M. Neubert and G. Xu, Dynamical Threshold Enhancement and Resummation in Drell-Yan Production, JHEP 07 (2008) 030 [arXiv:0710.0680] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    T. Becher, C. Lorentzen and M.D. Schwartz, Resummation for W and Z production at large pT, Phys. Rev. Lett. 108 (2012) 012001 [arXiv:1106.4310] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    T. Becher, C. Lorentzen and M.D. Schwartz, Precision Direct Photon and W-Boson Spectra at High p T and Comparison to LHC Data, Phys. Rev. D 86 (2012) 054026 [arXiv:1206.6115] [INSPIRE].ADSGoogle Scholar
  80. [80]
    M. Dasgupta, L. Magnea and G.P. Salam, Non-perturbative QCD effects in jets at hadron colliders, JHEP 02 (2008) 055 [arXiv:0712.3014] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Ze Long Liu
    • 1
  • Chong Sheng Li
    • 1
    • 2
  • Jian Wang
    • 3
  • Yan Wang
    • 1
  1. 1.School of Physics and State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina
  2. 2.Center for High Energy PhysicsPeking UniversityBeijingChina
  3. 3.PRISMA Cluster of Excellence & Mainz Institute for Theoretical PhysicsJohannes Gutenberg UniversityMainzGermany

Personalised recommendations