New predictions on the mass of the 1−+ light hybrid meson from QCD sum rules

Open Access
Regular Article - Theoretical Physics

Abstract

We calculate the coefficients of the dimension-8 quark and gluon condensates in the current-current correlator of 1−+ light hybrid current \( g\overline{q}(x){\gamma}_{\nu }i{G}_{\mu \nu }(x)q(x) \). With inclusion of these higher-power corrections and updating the input parameters, we re-analyze the mass of the 1−+ light hybrid meson from Monte-Carlo based QCD sum rules. Considering the possible violation of factorization of higher dimensional condensates and variation of 〈g3G3〉, we obtain a conservative mass range 1.72-2.60 GeV, which favors π1(2015) as a better hybrid candidate compared with π1(1600) and π1(1400).

Keywords

QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].Google Scholar
  2. [2]
    R. Zhang, Y.-B. Ding, X.-Q. Li and P.R. Page, Molecular states and 1−+ exotic mesons, Phys. Rev. D 65 (2002) 096005 [hep-ph/0111361] [INSPIRE].ADSGoogle Scholar
  3. [3]
    Z.F. Zhang and H.Y. Jin, The zero mode effect in the 1−+ four quark states, Phys. Rev. D 71 (2005) 011502 [hep-ph/0412226] [INSPIRE].ADSGoogle Scholar
  4. [4]
    I.J. General, P. Wang, S.R. Cotanch and F.J. Llanes-Estrada, Light 1−+ exotics: molecular resonances, Phys. Lett. B 653 (2007) 216 [arXiv:0707.1286] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    H.-X. Chen, A. Hosaka and S.-L. Zhu, The I G J PC = 11−+ tetraquark states, Phys. Rev. D 78 (2008) 054017 [arXiv:0806.1998] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M.S. Chanowitz and S.R. Sharpe, Hybrids: mixed states of quarks and gluons, Nucl. Phys. B 222 (1983) 211 [Erratum ibid. B 228 (1983) 588] [INSPIRE].
  7. [7]
    T. Barnes, F.E. Close, F. de Viron and J. Weyers, \( Q\overline{Q}G \) hermaphrodite mesons in the MIT bag model, Nucl. Phys. B 224 (1983) 241 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    N. Isgur and J.E. Paton, A flux tube model for hadrons in QCD, Phys. Rev. D 31 (1985) 2910 [INSPIRE].ADSGoogle Scholar
  9. [9]
    T. Barnes, F.E. Close and E.S. Swanson, Hybrid and conventional mesons in the flux tube model: numerical studies and their phenomenological implications, Phys. Rev. D 52 (1995) 5242 [hep-ph/9501405] [INSPIRE].ADSGoogle Scholar
  10. [10]
    C. Michael, Exotics, Int. Rev. Nucl. Phys. 9 (2004) 103 [hep-lat/0302001] [INSPIRE].Google Scholar
  11. [11]
    UKQCD collaboration, C. McNeile and C. Michael, Decay width of light quark hybrid meson from the lattice, Phys. Rev. D 73 (2006) 074506 [hep-lat/0603007] [INSPIRE].Google Scholar
  12. [12]
    J.J. Dudek, The lightest hybrid meson supermultiplet in QCD, Phys. Rev. D 84 (2011) 074023 [arXiv:1106.5515] [INSPIRE].ADSGoogle Scholar
  13. [13]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and resonance physics. Sum rules, Nucl. Phys. B 147 (1979) 385 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    I.I. Balitsky, D. Diakonov and A.V. Yung, Exotic mesons with J PC = 1−+ from QCD sum rules, Phys. Lett. B 112 (1982) 71 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Govaerts, F. de Viron, D. Gusbin and J. Weyers, Exotic mesons from QCD sum rules, Phys. Lett. B 128 (1983) 262 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    I.I. Balitsky, D. Diakonov and A.V. Yung, Exotic mesons with J PC = 1−+ , strange and nonstrange, Z. Phys. C 33 (1986) 265 [INSPIRE].ADSGoogle Scholar
  17. [17]
    J. Govaerts, F. de Viron, D. Gusbin and J. Weyers, QCD sum rules and hybrid mesons, Nucl. Phys. B 248 (1984) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J.I. Latorre, P. Pascual and S. Narison, Spectra and hadronic couplings of light hermaphrodite mesons, Z. Phys. C 34 (1987) 347 [INSPIRE].ADSGoogle Scholar
  19. [19]
    J. Govaerts, L.J. Reinders, P. Francken, X. Gonze and J. Weyers, Coupled QCD sum rules for hybrid mesons, Nucl. Phys. B 284 (1987) 674 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Narison, Gluonia, scalar and hybrid mesons in QCD, Nucl. Phys. A 675 (2000) 54 [hep-ph/9909470] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    K.G. Chetyrkin and S. Narison, Light hybrid mesons in QCD, Phys. Lett. B 485 (2000) 145 [hep-ph/0003151] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    H.Y. Jin and J.G. Korner, Radiative corrections to the correlator of (0++ , 1−+) light hybrid currents, Phys. Rev. D 64 (2001) 074002 [hep-ph/0003202] [INSPIRE].ADSGoogle Scholar
  23. [23]
    H.Y. Jin, J.G. Korner and T.G. Steele, Improved determination of the mass of the 1−+ light hybrid meson from QCD sum rules, Phys. Rev. D 67 (2003) 014025 [hep-ph/0211304] [INSPIRE].ADSGoogle Scholar
  24. [24]
    S. Narison, 1−+ light exotic mesons in QCD, Phys. Lett. B 675 (2009) 319 [arXiv:0903.2266] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Z.-f. Zhang, H.-y. Jin and T.G. Steele, Revisiting 1−+ and 0++ light hybrids from Monte-Carlo based QCD sum rules, Chin. Phys. Lett. 31 (2014) 051201 [arXiv:1312.5432] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    D.B. Leinweber, QCD sum rules for skeptics, Annals Phys. 254 (1997) 328 [nucl-th/9510051] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    F.X. Lee, Predicative ability of QCD sum rules for decuplet baryons, Phys. Rev. C 57 (1998) 322 [hep-ph/9707332] [INSPIRE].ADSGoogle Scholar
  28. [28]
    F.X. Lee, D.B. Leinweber and X.-m. Jin, New QCD sum rules for nucleon axial vector coupling constants, Phys. Rev. D 55 (1997) 4066 [nucl-th/9611011] [INSPIRE].ADSGoogle Scholar
  29. [29]
    F.X. Lee, Magnetic moments of Δ++ and Ω from QCD sum rules, Phys. Lett. B 419 (1998) 14 [hep-ph/9707411] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    L. Wang and F.X. Lee, Octet baryon magnetic moments from QCD sum rules, Phys. Rev. D 78 (2008) 013003 [arXiv:0804.1779] [INSPIRE].ADSGoogle Scholar
  31. [31]
    D.J. Broadhurst and S.C. Generalis, Dimension eight contributions to light quark QCD sum rules, Phys. Lett. B 165 (1985) 175 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A.G. Grozin, Methods of calculation of higher power corrections in QCD, Int. J. Mod. Phys. A 10 (1995) 3497 [hep-ph/9412238] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Calculations in external fields in quantum chromodynamics. Technical review, Fortschr. Phys. 32 (1984) 585 [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    S. Narison, V-A hadronic tau decays: a laboratory for the QCD vacuum, Phys. Lett. B 624 (2005) 223 [hep-ph/0412152] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    R.A. Bertlmann, G. Launer and E. de Rafael, Gaussian sum rules in quantum chromodynamics and local duality, Nucl. Phys. B 250 (1985) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    R.A. Bertlmann, C.A. Dominguez, M. Loewe, M. Perrottet and E. de Rafael, Determination of the gluon condensate and the four quark condensate via FESR, Z. Phys. C 39 (1988) 231 [INSPIRE].ADSGoogle Scholar
  37. [37]
    G. Launer, S. Narison and R. Tarrach, Nonperturbative QCD vacuum from e + e I = 1 hadron data, Z. Phys. C 26 (1984) 433 [INSPIRE].ADSGoogle Scholar
  38. [38]
    S. Narison, Determination of the D = 2 ‘operatorfrom e + e data, Phys. Lett. B 300 (1993) 293 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Narison, QCD tests from e + e I = 1 hadrons data and implication on the value of α s from tau decays, Phys. Lett. B 361 (1995) 121 [hep-ph/9504334] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Narison, Power corrections to α s(M τ), |V us| and \( {\overline{m}}_s \), Phys. Lett. B 673 (2009) 30 [arXiv:0901.3823] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Use and misuse of QCD sum rules, factorization and related topics, Nucl. Phys. B 237 (1984) 525 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    E. Bagan, J.I. Latorre, P. Pascual and R. Tarrach, Heavy quark expansion, factorization and eight-dimensional gluon condensates, Nucl. Phys. B 254 (1985) 555 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S.N. Nikolaev and A.V. Radyushkin, QCD charmonium sum rules up to O(G 4) order (in Russian), Phys. Lett. B 124 (1983) 243 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Narison, Gluon condensates and precise \( {\overline{m}}_{c,b} \) from QCD-moments and their ratios to order α s3 andG 4〉, Phys. Lett. B 706 (2012) 412 [arXiv:1105.2922] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Narison, Gluon condensates and \( {\overline{m}}_b\left({\overline{m}}_b\right) \) from QCD-exponential sum rules at higher orders, Phys. Lett. B 707 (2012) 259 [arXiv:1105.5070] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    S. Narison, Mini-review on QCD spectral sum rules, arXiv:1409.8148 [INSPIRE].
  47. [47]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Are all hadrons alike?, Nucl. Phys. B 191 (1981) 301 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. D’Elia, A. Di Giacomo and E. Meggiolaro, Field strength correlators in full QCD, Phys. Lett. B 408 (1997) 315 [hep-lat/9705032] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S. Narison and E. de Rafael, On QCD sum rules of the Laplace transform type and light quark masses, Phys. Lett. B 103 (1981) 57 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Narison, QCD as a theory of hadrons: from partons to confinement, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 17 (2002) 1 [hep-ph/0205006] [INSPIRE].Google Scholar
  51. [51]
    K.G. Chetyrkin, S. Narison and V.I. Zakharov, Short distance tachyonic gluon mass and 1/Q 2 corrections, Nucl. Phys. B 550 (1999) 353 [hep-ph/9811275] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Narison and V.I. Zakharov, Hints on the power corrections from current correlators in x-space, Phys. Lett. B 522 (2001) 266 [hep-ph/0110141] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  53. [53]
    S. Narison and V.I. Zakharov, Duality between QCD perturbative series and power corrections, Phys. Lett. B 679 (2009) 355 [arXiv:0906.4312] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Zhejiang Institute of Modern PhysicsZhejiang UniversityHangzhouChina
  2. 2.Physics DepartmentNingbo UniversityNingboChina

Personalised recommendations