Reduced modular symmetries of threshold corrections and gauge coupling unification

Open Access
Regular Article - Theoretical Physics

Abstract

We revisit the question of gauge coupling unification at the string scale in orbifold compactifications of the heterotic string for the supersymmetric Standard Model. In the presence of discrete Wilson lines threshold corrections with modular symmetry that is a subgroup of the full modular group arise. We find that reduced modular symmetries not previously reported are possible. We conjecture that the effects of such threshold corrections can be simulated using sums of terms built from Dedekind eta functions to obtain the appropriate modular symmetry. For the cases of the ℤ8-I orbifold and the ℤ3 × ℤ6 orbifold it is easily possible to obtain gauge coupling unification at the “observed” scale with Kähler moduli T of approximately one.

Keywords

Strings and branes phenomenology Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.R. Ellis, S. Kelley and D.V. Nanopoulos, Probing the desert using gauge coupling unification, Phys. Lett. B 260 (1991) 131 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    V.S. Kaplunovsky, One Loop Threshold Effects in String Unification, Nucl. Phys. B 307 (1988) 145 [Erratum ibid. B 382 (1992) 436] [hep-th/9205068] [INSPIRE].
  4. [4]
    K.R. Dienes, String theory and the path to unification: A Review of recent developments, Phys. Rept. 287 (1997) 447 [hep-th/9602045] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    D. Bailin, A. Love, W.A. Sabra and S. Thomas, Duality symmetries of threshold corrections in orbifold models, Phys. Lett. B 320 (1994) 21 [hep-th/9309133] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D. Bailin, A. Love, W.A. Sabra and S. Thomas, String loop threshold corrections forN Coxeter orbifolds, Mod. Phys. Lett. A 9 (1994) 67 [hep-th/9310008] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    M. Spalinski, On the discrete symmetry group of Narian orbifolds, Phys. Lett. B 275 (1992) 47 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J. Erler, D. Jungnickel and H.P. Nilles, Space duality and quantized Wilson lines, Phys. Lett. B 276 (1992) 303 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    L.E. Ibáñez and D. Lüst, Duality anomaly cancellation, minimal string unification and the effective low-energy Lagrangian of 4D strings, Nucl. Phys. B 382 (1992) 305 [hep-th/9202046] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Erler and M. Spalinski, Modular groups for twisted Narain models, Int. J. Mod. Phys. A 9 (1994) 4407 [hep-th/9208038] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    D. Bailin, A. Love, W.A. Sabra and S. Thomas, Modular symmetries inN orbifold compactified string theories with Wilson lines, Mod. Phys. Lett. A 9 (1994) 1229 [hep-th/9312122] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    M.A. Klaput and C. Paleani, The computation of one-loop heterotic string threshold corrections for general orbifold models with discrete Wilson lines, arXiv:1001.1480 [INSPIRE].
  13. [13]
    A. Love and S. Todd, Modular symmetries of threshold corrections for Abelian orbifolds with discrete Wilson lines, Nucl. Phys. B 481 (1996) 253 [hep-th/9606161] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    A. Hebecker and M. Trapletti, Gauge unification in highly anisotropic string compactifications, Nucl. Phys. B 713 (2005) 173 [hep-th/0411131] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    S. Groot Nibbelink and O. Loukas, MSSM-like models on8 toroidal orbifolds, JHEP 12 (2013) 044 [arXiv:1308.5145] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    H.P. Nilles and P.K.S. Vaudrevange, Geography of Fields in Extra Dimensions: String Theory Lessons for Particle Physics, arXiv:1403.1597 [INSPIRE].
  17. [17]
    C. Angelantonj, I. Florakis and B. Pioline, A new look at one-loop integrals in string theory, Commun. Num. Theor. Phys. 6 (2012) 159 [arXiv:1110.5318] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    C. Angelantonj, I. Florakis and B. Pioline, One-Loop BPS amplitudes as BPS-state sums, JHEP 06 (2012) 070 [arXiv:1203.0566] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    C. Angelantonj, I. Florakis and B. Pioline, Rankin-Selberg methods for closed strings on orbifolds, JHEP 07 (2013) 181 [arXiv:1304.4271] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    C. Angelantonj, I. Florakis and B. Pioline, Threshold corrections, generalised prepotentials and Eichler integrals, arXiv:1502.00007 [INSPIRE].
  21. [21]
    M. Fischer, M. Ratz, J. Torrado and P.K.S. Vaudrevange, Classification of symmetric toroidal orbifolds, JHEP 01 (2013) 084 [arXiv:1209.3906] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    D. Bailin and A. Love, String unification, grand unification and string loop threshold corrections, Phys. Lett. B 292 (1992) 315 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of Physics & AstronomyUniversity of SussexBrightonUnited Kingdom

Personalised recommendations