Three-jet production in POWHEG

Open Access


We present an implementation of the production of three jets at NLO plus parton-shower effects in the POWHEG BOX. Using the recently introduced MiNLO procedure for setting the renormalization and factorization scales, we are able to obtain a generator that is also well behaved when the third jet becomes unresolved. We compare key distributions computed at the NLO level, at the level of the POWHEG hard emission and after full shower by PYTHIA, PYTHIA 8 and HERWIG6. We also compare our three-jet generator with the already available dijet POWHEG generator.


Monte Carlo Simulations NLO Computations 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.R. Andersen and J.M. Smillie, Multiple jets at the LHC with high energy jets, JHEP 06 (2011) 010 [arXiv:1101.5394] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, Jet pair production in POWHEG, JHEP 04 (2011) 081 [arXiv:1012.3380] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett. 70 (1993) 2677 [hep-ph/9302280] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to two quark three gluon amplitudes, Nucl. Phys. B 437 (1995) 259 [hep-ph/9409393] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    Z. Kunszt, A. Signer and Z. Trócsányi, One loop radiative corrections to the helicity amplitudes of QCD processes involving four quarks and one gluon, Phys. Lett. B 336 (1994) 529 [hep-ph/9405386] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Gunion and Z. Kunszt, Four jet processes: gluon-gluon scattering to nonidentical quark-anti-quark pairs, Phys. Lett. B 159 (1985) 167 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J.F. Gunion and Z. Kunszt, Six quark subprocesses in QCD, Phys. Lett. B 176 (1986) 163 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J.F. Gunion and Z. Kunszt, Addendum concerning the four quark two gluon subprocess, Phys. Lett. B 176 (1986) 477 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J.G.M. Kuijf, Multiparton production at hadron colliders, Ph.D thesis, Leiden University; Leiden, The Netherlands (1991).Google Scholar
  13. [13]
    Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J.M. Campbell, R.K. Ellis, R. Frederix, P. Nason, C. Oleari et al., NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM, JHEP 07 (2012) 092 [arXiv:1202.5475] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K. Hamilton, P. Nason and G. Zanderighi, MINLO: Multi-scale Improved NLO, JHEP 10 (2012) 155 [arXiv:1206.3572] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Alioli, P. Nason, C. Oleari and E. Re, Vector boson plus one jet production in POWHEG, JHEP 01 (2011) 095 [arXiv:1009.5594] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Badger, B. Biedermann, P. Uwer and V. Yundin, Numerical evaluation of virtual corrections to multi-jet production in massless QCD, Comput. Phys. Commun. 184 (2013) 1981 [arXiv:1209.0100] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G. Cullen et al., Automated one-loop calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering AMplitudes from Unitarity-based Reduction Algorithm at the Integrand-level, JHEP 08 (2010) 080 [arXiv:1006.0710] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    P. Mastrolia, E. Mirabella, G. Ossola, T. Peraro and H. van Deurzen, The integrand reduction of one- and two-loop scattering amplitudes, PoS(LL2012)028 [arXiv:1209.5678] [INSPIRE].
  22. [22]
    T. Binoth, J.-P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) 2317 [arXiv:0810.0992] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  23. [23]
    G. Heinrich, G. Ossola, T. Reiter and F. Tramontano, Tensorial reconstruction at the integrand level, JHEP 10 (2010) 105 [arXiv:1008.2441] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.P. Guillet, G. Heinrich and J. von Soden-Fraunhofen, Tools for NLO automation: extension of the golem95C integral library, arXiv:1312.3887 [INSPIRE].
  25. [25]
    A. van Hameren, OneLOop: for the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  26. [26]
    G. Bevilacqua et al., HELAC-NLO, Comput. Phys. Commun. 184 (2013) 986 [arXiv:1110.1499] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Badger, B. Biedermann, P. Uwer and V. Yundin, NLO QCD corrections to multi-jet production at the LHC with a centre-of-mass energy of \( \sqrt{s} \) = 8 TeV, Phys. Lett. B 718 (2013) 965 [arXiv:1209.0098] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P.M. Nadolsky et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [INSPIRE].ADSGoogle Scholar
  32. [32]
    P. Nason and C. Oleari, Generation cuts and Born suppression in POWHEG, arXiv:1303.3922 [INSPIRE].
  33. [33]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    TOTEM Collaboration, G. Antchev et al., Measurement of proton-proton inelastic scattering cross-section at \( \sqrt{S} \) = 7 TeV, Europhys. Lett. 101 (2013) 21003.ADSCrossRefGoogle Scholar
  37. [37]
    K. Hamilton, P. Nason, C. Oleari and G. Zanderighi, Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching, JHEP 05 (2013) 082 [arXiv:1212.4504] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.INFN — Sezione di Milano BicoccaMilanItaly
  2. 2.Università di Milano-BicoccaMilanItaly

Personalised recommendations