Advertisement

Custodial leptons and Higgs decays

  • Adrián Carmona
  • Florian Goertz
Article

Abstract

We study the effects of extended fermion sectors, respecting custodial symmetry, on Higgs production and decay. The resulting protection for the Zb L b L and Zτ R τ R decays allows for potentially interesting signals in Higgs physics, while maintaining the good agreement of the Standard Model with precision tests, without significant fine-tuning. Although being viable setups on their own, the models we study can particularly be motivated as the low energy effective theories of the composite Higgs models MCHM5 and MCHM10 or the corresponding gauge-Higgs unification models. The spectra can be identified with the light custodians present in these theories. These have the potential to describe the relevant physics in their fermion sectors in a simplified and transparent way. In contrast to previous studies of composite models, we consider the impact of a realistic lepton sector on the Higgs decays. We find significant modifications in the decays to τ leptons and photons due to the new leptonic resonances. While from a pure low energy perspective an enhancement of the channel pp → h → γγ turns out to be possible, if one considers constraints on the parameters from the full structure of the composite models, the decay mode into photons is always reduced. We also demonstrate that taking into account the non-linearity of the Higgs sector does not change the qualitative picture for the decays into τ leptons or photons in the case of the dominant Higgs production mechanism.

Keywords

Higgs Physics Beyond Standard Model Technicolor and Composite Models 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    ATLAS collaboration, An update of combined measurements of the new Higgs-like boson with high mass resolution channels, ATLAS-CONF-2012-170, CERN, Geneva Switzerland (2012).
  4. [4]
    CMS collaboration, Combination of Standard Model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045, CERN, Geneva Switzerland (2012).
  5. [5]
    A. Joglekar, P. Schwaller and C.E. Wagner, Dark matter and enhanced Higgs to di-photon rate from vector-like leptons, JHEP 12 (2012) 064 [arXiv:1207.4235] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    N. Arkani-Hamed, K. Blum, R.T. D’Agnolo and J. Fan, 2 : 1 for naturalness at the LHC?, JHEP 01 (2013) 149 [arXiv:1207.4482] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    F. Goertz, U. Haisch and M. Neubert, Bounds on warped extra dimensions from a Standard Model-like Higgs boson, Phys. Lett. B 713 (2012) 23 [arXiv:1112.5099] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    K. Blum and R.T. D’Agnolo, 2 Higgs or not 2 Higgs, Phys. Lett. B 714 (2012) 66 [arXiv:1202.2364] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    F. Boudjema and G.D. La Rochelle, Beyond the MSSM Higgs bosons at 125 GeV, Phys. Rev. D 86 (2012) 015018 [arXiv:1203.3141] [INSPIRE].ADSGoogle Scholar
  12. [12]
    L. Wang and X.-F. Han, LHC diphoton Higgs signal and top quark forward-backward asymmetry in quasi-inert Higgs doublet model, JHEP 05 (2012) 088 [arXiv:1203.4477] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, Composite Higgs sketch, JHEP 11 (2012) 003 [arXiv:1205.4032] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Dawson and E. Furlan, A Higgs conundrum with vector fermions, Phys. Rev. D 86 (2012) 015021 [arXiv:1205.4733] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Azatov, S. Chang, N. Craig and J. Galloway, Higgs fits preference for suppressed down-type couplings: implications for supersymmetry, Phys. Rev. D 86 (2012) 075033 [arXiv:1206.1058] [INSPIRE].ADSGoogle Scholar
  16. [16]
    N. Bonne and G. Moreau, Reproducing the Higgs boson data with vector-like quarks, Phys. Lett. B 717 (2012) 409 [arXiv:1206.3360] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K. Hagiwara, J.S. Lee and J. Nakamura, Properties of 125 GeV Higgs boson in non-decoupling MSSM scenarios, JHEP 10 (2012) 002 [arXiv:1207.0802] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    B. Bellazzini, C. Petersson and R. Torre, Photophilic Higgs from sgoldstino mixing, Phys. Rev. D 86 (2012) 033016 [arXiv:1207.0803] [INSPIRE].ADSGoogle Scholar
  19. [19]
    R. Benbrik et al., Confronting the MSSM and the NMSSM with the discovery of a signal in the two photon channel at the LHC, Eur. Phys. J. C 72 (2012) 2171 [arXiv:1207.1096] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M.R. Buckley and D. Hooper, Are there hints of light stops in recent Higgs search results?, Phys. Rev. D 86 (2012) 075008 [arXiv:1207.1445] [INSPIRE].ADSGoogle Scholar
  21. [21]
    H. An, T. Liu and L.-T. Wang, 125 GeV Higgs boson, enhanced di-photon rate and gauged U(1)PQ -extended MSSM, Phys. Rev. D 86 (2012) 075030 [arXiv:1207.2473] [INSPIRE].ADSGoogle Scholar
  22. [22]
    A. Alves et al., Explaining the Higgs decays at the LHC with an extended electroweak model, Eur. Phys. J. C 73 (2013) 2288 [arXiv:1207.3699] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    T. Abe, N. Chen and H.-J. He, LHC Higgs signatures from extended electroweak gauge symmetry, JHEP 01 (2013) 082 [arXiv:1207.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D. Bertolini and M. McCullough, The social Higgs, JHEP 12 (2012) 118 [arXiv:1207.4209] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    N. Craig and S. Thomas, Exclusive signals of an extended Higgs sector, JHEP 11 (2012) 083 [arXiv:1207.4835] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    L.G. Almeida, E. Bertuzzo, P.A. Machado and R.Z. Funchal, Does Hγγ taste like vanilla new physics?, JHEP 11 (2012) 085 [arXiv:1207.5254] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    B. Batell, D. McKeen and M. Pospelov, Singlet neighbors of the Higgs boson, JHEP 10 (2012) 104 [arXiv:1207.6252] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Hashimoto and V. Miransky, Enhanced diphoton Higgs decay rate and isospin symmetric Higgs boson, Phys. Rev. D 86 (2012) 095018 [arXiv:1208.1305] [INSPIRE].ADSGoogle Scholar
  29. [29]
    K. Schmidt-Hoberg and F. Staub, Enhanced hγγ rate in MSSM singlet extensions, JHEP 10 (2012) 195 [arXiv:1208.1683] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Reece, Vacuum instabilities with a wrong-sign Higgs-gluon-gluon amplitude, New J. Phys. 15 (2013) 043003 [arXiv:1208.1765] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    F. Boudjema and G.D. La Rochelle, Supersymmetric Higgses beyond the MSSM: an update with avour and dark matter constraints, Phys. Rev. D 86 (2012) 115007 [arXiv:1208.1952] [INSPIRE].ADSGoogle Scholar
  32. [32]
    L. Wang and X.-F. Han, 130 GeV gamma-ray line and enhancement of h →γγ in the Higgs triplet model plus a scalar dark matter, Phys. Rev. D 87 (2013) 015015 [arXiv:1209.0376] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A. Alves, Is the new resonance spin 0 or 2? Taking a step forward in the Higgs boson discovery, Phys. Rev. D 86 (2012) 113010 [arXiv:1209.1037] [INSPIRE].ADSGoogle Scholar
  34. [34]
    E. Bertuzzo, P.A. Machado and R. Zukanovich Funchal, Can new colored particles illuminate the Higgs?, JHEP 02 (2013) 086 [arXiv:1209.6359] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Chala, hγγ excess and dark matter from composite Higgs models, JHEP 01 (2013) 122 [arXiv:1210.6208] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Dawson, E. Furlan and I. Lewis, Unravelling an extended quark sector through multiple Higgs production?, Phys. Rev. D 87 (2013) 014007 [arXiv:1210.6663] [INSPIRE].ADSGoogle Scholar
  37. [37]
    U. Haisch and F. Mahmoudi, MSSM: cornered and correlated, JHEP 01 (2013) 061 [arXiv:1210.7806] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    P. Bechtle et al., MSSM interpretations of the LHC discovery: light or heavy Higgs?, arXiv:1211.1955 [INSPIRE].
  39. [39]
    C. Petersson, A. Romagnoni and R. Torre, Liberating Higgs couplings in supersymmetry, Phys. Rev. D 87 (2013) 013008 [arXiv:1211.2114] [INSPIRE].ADSGoogle Scholar
  40. [40]
    K. Schmidt-Hoberg, F. Staub and M.W. Winkler, Enhanced diphoton rates at Fermi and the LHC, JHEP 01 (2013) 124 [arXiv:1211.2835] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    E. Dudas, C. Petersson and P. Tziveloglou, Low scale supersymmetry breaking and its LHC signatures, Nucl. Phys. B 870 (2013) 353 [arXiv:1211.5609] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    M. Berg, I. Buchberger, D. Ghilencea and C. Petersson, Higgs diphoton rate enhancement from supersymmetric physics beyond the MSSM, arXiv:1212.5009 [INSPIRE].
  43. [43]
    E. Iltan, Higgs to diphoton decay rate and the antisymmetric tensor unparticle mediation, arXiv:1212.5695 [INSPIRE].
  44. [44]
    W. Chao, J.-H. Zhang and Y. Zhang, Vacuum stability and Higgs diphoton decay rate in the Zee-Babu model, arXiv:1212.6272 [INSPIRE].
  45. [45]
    C. Han, N. Liu, L. Wu, J.M. Yang and Y. Zhang, Two-Higgs-doublet model with a color-triplet scalar: a joint explanation for top quark forward-backward asymmetry and Higgs decay to diphoton, arXiv:1212.6728 [INSPIRE].
  46. [46]
    E.J. Chun and P. Sharma, A light triplet boson and Higgs-to-diphoton in supersymmetric type-II seesaw, arXiv:1301.1437 [INSPIRE].
  47. [47]
    S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa and T. Shimotani, Novel universality and Higgs decay Hγγ, gg in the SO(5) × U(1) gauge-Higgs unification, arXiv:1301.1744 [INSPIRE].
  48. [48]
    C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group scaling of Higgs operators and Γ(hγγ), JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    J. Fan and M. Reece, Probing charged matter through Higgs diphoton decay, gamma ray lines and EDMs, arXiv:1301.2597 [INSPIRE].
  50. [50]
    N. Manton, A new six-dimensional approach to the Weinberg-Salam model, Nucl. Phys. B 158 (1979) 141 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    H. Hatanaka, T. Inami and C. Lim, The gauge hierarchy problem and higher dimensional gauge theories, Mod. Phys. Lett. A 13 (1998) 2601 [hep-th/9805067] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    G. von Gersdorff, N. Irges and M. Quirós, Bulk and brane radiative effects in gauge theories on orbifolds, Nucl. Phys. B 635 (2002) 127 [hep-th/0204223] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    C. Csáki, C. Grojean and H. Murayama, Standard Model Higgs from higher dimensional gauge fields, Phys. Rev. D 67 (2003) 085012 [hep-ph/0210133] [INSPIRE].ADSGoogle Scholar
  54. [54]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M.S. Carena, E. Ponton, J. Santiago and C.E. Wagner, Light Kaluza Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys. B 759 (2006) 202 [hep-ph/0607106] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    M.S. Carena, E. Ponton, J. Santiago and C. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [INSPIRE].ADSGoogle Scholar
  58. [58]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].ADSGoogle Scholar
  59. [59]
    M. Carena, A.D. Medina, B. Panes, N.R. Shah and C.E. Wagner, Collider phenomenology of gauge-Higgs unification scenarios in warped extra dimensions, Phys. Rev. D 77 (2008) 076003 [arXiv:0712.0095] [INSPIRE].ADSGoogle Scholar
  60. [60]
    A. Pomarol and J. Serra, Top quark compositeness: feasibility and implications, Phys. Rev. D 78 (2008) 074026 [arXiv:0806.3247] [INSPIRE].ADSGoogle Scholar
  61. [61]
    G. Panico, M. Safari and M. Serone, Simple and realistic composite Higgs models in at extra dimensions, JHEP 02 (2011) 103 [arXiv:1012.2875] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    O. Matsedonskyi, G. Panico and A. Wulzer, Light top partners for a light composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    F. del Aguila, A. Carmona and J. Santiago, Neutrino masses from an A 4 symmetry in holographic composite Higgs models, JHEP 08 (2010) 127 [arXiv:1001.5151] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    F. del Aguila, A. Carmona and J. Santiago, Tau custodian searches at the LHC, Phys. Lett. B 695 (2011) 449 [arXiv:1007.4206] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    A. Carmona and F. Goertz, work in progress.Google Scholar
  66. [66]
    A. Atre, M. Carena, T. Han and J. Santiago, Heavy quarks above the top at the Tevatron, Phys. Rev. D 79 (2009) 054018 [arXiv:0806.3966] [INSPIRE].ADSGoogle Scholar
  67. [67]
    A. Atre et al., Model-independent searches for new quarks at the LHC, JHEP 08 (2011) 080 [arXiv:1102.1987] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the Standard Model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    ATLAS collaboration, Search for heavy top-like quarks decaying to a Higgs boson and a top quark in the lepton plus jets final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-018, CERN, Geneva Switzerland (2013).
  71. [71]
    A. Falkowski, Pseudo-Goldstone Higgs production via gluon fusion, Phys. Rev. D 77 (2008) 055018 [arXiv:0711.0828] [INSPIRE].ADSGoogle Scholar
  72. [72]
    A. Azatov and J. Galloway, Light custodians and Higgs physics in composite models, Phys. Rev. D 85 (2012) 055013 [arXiv:1110.5646] [INSPIRE].ADSGoogle Scholar
  73. [73]
    E. Furlan, Gluon-fusion Higgs production at NNLO for a non-standard Higgs sector, JHEP 10 (2011) 115 [arXiv:1106.4024] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    F. del Aguila, M. Pérez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP 09 (2000) 011 [hep-ph/0007316] [INSPIRE].CrossRefGoogle Scholar
  75. [75]
    G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    A. Djouadi and G. Moreau, Higgs production at the LHC in warped extra-dimensional models, Phys. Lett. B 660 (2008) 67 [arXiv:0707.3800] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    A. Azatov, M. Toharia and L. Zhu, Higgs mediated FCNC’s in warped extra dimensions, Phys. Rev. D 80 (2009) 035016 [arXiv:0906.1990] [INSPIRE].ADSGoogle Scholar
  78. [78]
    C. Bouchart and G. Moreau, Higgs boson phenomenology and VEV shift in the RS scenario, Phys. Rev. D 80 (2009) 095022 [arXiv:0909.4812] [INSPIRE].ADSGoogle Scholar
  79. [79]
    S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, The custodial Randall-Sundrum model: from precision tests to Higgs physics, JHEP 09 (2010) 014 [arXiv:1005.4315] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    A. Azatov, M. Toharia and L. Zhu, Higgs production from gluon fusion in warped extra dimensions, Phys. Rev. D 82 (2010) 056004 [arXiv:1006.5939] [INSPIRE].ADSGoogle Scholar
  81. [81]
    M. Carena, S. Casagrande, F. Goertz, U. Haisch and M. Neubert, Higgs production in a warped extra dimension, JHEP 08 (2012) 156 [arXiv:1204.0008] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsETH ZurichZurichSwitzerland

Personalised recommendations