Advertisement

Phase structure in a dynamical soft-wall holographic QCD model

  • Song He
  • Shang-Yu Wu
  • Yi Yang
  • Pei-Hung Yuan
Article

Abstract

We consider the Einstein-Maxwell-dilaton system with an arbitrary kinetic gauge function and a dilaton potential. A family of analytic solutions is obtained by the potential reconstruction method. We then study its holographic dual QCD model. The kinetic gauge function can be fixed by requesting the linear Regge spectrum of mesons. We calculate the free energy to obtain the phase diagram of the holographic QCD model and interpret our result as the heavy quarks system by comparing the recent lattice QCD simulation. We finally obtain the equations of state in our model.

Keywords

Gauge-gravity correspondence Phase Diagram of QCD 

References

  1. [1]
    O. Philipsen, Lattice QCD at non-zero temperature and baryon density, arXiv:1009.4089 [INSPIRE].
  2. [2]
    J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking and pions in nonsupersymmetric gauge/gravity duals, Phys. Rev. D 69 (2004) 066007 [hep-th/0306018] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Towards a holographic dual of large-N c QCD, JHEP 05 (2004) 041 [hep-th/0311270] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT with flavor, JHEP 07 (2003) 049 [hep-th/0304032] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114 (2005) 1083 [hep-th/0507073] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  8. [8]
    J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].ADSGoogle Scholar
  10. [10]
    B. Batell and T. Gherghetta, Dynamical soft-wall AdS/QCD, Phys. Rev. D 78 (2008) 026002 [arXiv:0801.4383] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    W. de Paula, T. Frederico, H. Forkel and M. Beyer, Dynamical AdS/QCD with area-law confinement and linear Regge trajectories, Phys. Rev. D 79 (2009) 075019 [arXiv:0806.3830] [INSPIRE].ADSGoogle Scholar
  12. [12]
    S.S. Gubser and A. Nellore, Mimicking the QCD equation of state with a dual black hole, Phys. Rev. D 78 (2008) 086007 [arXiv:0804.0434] [INSPIRE].ADSGoogle Scholar
  13. [13]
    O. DeWolfe, S.S. Gubser and C. Rosen, A holographic critical point, Phys. Rev. D 83 (2011) 086005 [arXiv:1012.1864] [INSPIRE].ADSGoogle Scholar
  14. [14]
    O. DeWolfe, S.S. Gubser and C. Rosen, Dynamic critical phenomena at a holographic critical point, Phys. Rev. D 84 (2011) 126014 [arXiv:1108.2029] [INSPIRE].ADSGoogle Scholar
  15. [15]
    B. Galow, E. Megias, J. Nian and H. Pirner, Phenomenology of AdS/QCD and its gravity dual, Nucl. Phys. B 834 (2010) 330 [arXiv:0911.0627] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    E. Megias, H. Pirner and K. Veschgini, QCD thermodynamics using five-dimensional gravity, Phys. Rev. D 83 (2011) 056003 [arXiv:1009.2953] [INSPIRE].ADSGoogle Scholar
  17. [17]
    U. Gürsoy, E. Kiritsis, L. Mazzanti, G. Michalogiorgakis and F. Nitti, Improved holographic QCD, Lect. Notes Phys. 828 (2011) 79 [arXiv:1006.5461] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R.-G. Cai, S. He and D. Li, A hQCD model and its phase diagram in Einstein-Maxwell-Dilaton system, JHEP 03 (2012) 033 [arXiv:1201.0820] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    D. Li, S. He, M. Huang and Q.-S. Yan, Thermodynamics of deformed AdS 5 model with a positive/negative quadratic correction in graviton-dilaton system, JHEP 09 (2011) 041 [arXiv:1103.5389] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R.-G. Cai, S. Chakrabortty, S. He and L. Li, Some aspects of QGP phase in a hQCD model, JHEP 02 (2013) 068 [arXiv:1209.4512] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Shifman, Highly excited hadrons in QCD and beyond, hep-ph/0507246 [INSPIRE].
  22. [22]
    C. Park, D.-Y. Gwak, B.-H. Lee, Y. Ko and S. Shin, The soft wall model in the hadronic medium, Phys. Rev. D 84 (2011) 046007 [arXiv:1104.4182] [INSPIRE].ADSGoogle Scholar
  23. [23]
    Y. Kim, J.-P. Lee and S.H. Lee, Heavy quarkonium in a holographic QCD model, Phys. Rev. D 75 (2007) 114008 [hep-ph/0703172] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Fujita, K. Fukushima, T. Misumi and M. Murata, Finite-temperature spectral function of the vector mesons in an AdS/QCD model, Phys. Rev. D 80 (2009) 035001 [arXiv:0903.2316] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Fujita, T. Kikuchi, K. Fukushima, T. Misumi and M. Murata, Melting spectral functions of the scalar and vector mesons in a holographic QCD model, Phys. Rev. D 81 (2010) 065024 [arXiv:0911.2298] [INSPIRE].ADSGoogle Scholar
  26. [26]
    L.-X. Cui, S. Takeuchi and Y.-L. Wu, Quark number susceptibility and QCD phase transition in the predictive soft-wall AdS/QCD model with finite temperature, Phys. Rev. D 84 (2011) 076004 [arXiv:1107.2738] [INSPIRE].ADSGoogle Scholar
  27. [27]
    L.-X. Cui, S. Takeuchi and Y.-L. Wu, Thermal mass spectra of vector and axial-vector mesons in predictive soft-wall AdS/QCD model, JHEP 04 (2012) 144 [arXiv:1112.5923] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    F. Giannuzzi, Holographic vector mesons in a hot and dense medium, arXiv:1209.4198 [INSPIRE].
  29. [29]
    U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holography and thermodynamics of 5D dilaton-gravity, JHEP 05 (2009) 033 [arXiv:0812.0792] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    M. Fromm, J. Langelage, S. Lottini and O. Philipsen, The QCD deconfinement transition for heavy quarks and all baryon chemical potentials, JHEP 01 (2012) 042 [arXiv:1111.4953] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P. de Forcrand and O. Philipsen, The chiral critical line of N f = 2 + 1 QCD at zero and non-zero baryon density, JHEP 01 (2007) 077 [hep-lat/0607017] [INSPIRE].CrossRefGoogle Scholar
  32. [32]
    WHOT-QCD collaboration, H. Saito et al., The order of the deconfinement phase transition in a heavy quark mass region, PoS(LATTICE 2010)212 [arXiv:1011.4747] [INSPIRE].
  33. [33]
    WHOT-QCD collaboration, H. Saito et al., Phase structure of finite temperature QCD in the heavy quark region, Phys. Rev. D 84 (2011) 054502 [Erratum ibid. D 85 (2012) 079902] [arXiv:1106.0974] [INSPIRE].
  34. [34]
    WHOT-QCD collaboration, H. Saito et al., Finite density QCD phase transition in the heavy quark region, PoS(LATTICE 2011)214 [arXiv:1202.6113] [INSPIRE].
  35. [35]
    M. Fromm, J. Langelage, S. Lottini, M. Neuman and O. Philipsen, The silver blaze property for QCD with heavy quarks from the lattice, arXiv:1207.3005 [INSPIRE].
  36. [36]
    M. Fromm, J. Langelage, S. Lottini, M. Neuman and O. Philipsen, Phase transitions in heavy-quark QCD from an effective theory, arXiv:1210.7994 [INSPIRE].
  37. [37]
    R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  38. [38]
    R. Gregory and R. Laflamme, The instability of charged black strings and p-branes, Nucl. Phys. B 428 (1994) 399 [hep-th/9404071] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    S.S. Gubser and I. Mitra, Instability of charged black holes in anti-de Sitter space, hep-th/0009126 [INSPIRE].
  40. [40]
    S.S. Gubser and I. Mitra, The evolution of unstable black holes in anti-de Sitter space, JHEP 08 (2001) 018 [hep-th/0011127] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    H.S. Reall, Classical and thermodynamic stability of black branes, Phys. Rev. D 64 (2001) 044005 [hep-th/0104071] [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    S. Borsányi et al., QCD equation of state at nonzero chemical potential: continuum results with physical quark masses at order mu 2, JHEP 08 (2012) 053 [arXiv:1204.6710] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Stoffers and I. Zahed, Improved AdS/QCD model with matter, Phys. Rev. D 83 (2011) 055016 [arXiv:1009.4428] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of ScienceBeijingP.R.C.
  2. 2.Institute of PhysicsNational Chiao Tung UniversityHsinchuR.O.C.
  3. 3.Department of ElectrophysicsNational Chiao Tung University, National Center for Theoretical ScienceHsinchuR.O.C.

Personalised recommendations