BFKL Pomeron calculus: solution to equations for nucleus-nucleus scattering in the saturation domain

  • Carlos Contreras
  • Eugene Levin
  • Rodrigo Meneses


In this paper we solve the equation for nucleus-nucleus scattering in the BFKL Pomeron calculus, suggested by Braun [1–3]. We find these solutions analytically at high energies as well as numerically in the entire region of energies inside the saturation region. The semi-classical approximation is used to select out the infinite set of the parasite solutions. The nucleus-nucleus cross sections at high energy are estimated and compared with the Glauber-Gribov approach. It turns out that the exact formula gives the estimates that are very close to the ones based on Glauber-Gribov formula which is important for the practical applications.


Resummation QCD 


  1. [1]
    M. Braun, Nucleus-nucleus scattering in perturbative QCD with N c → ∞, Phys. Lett. B 483 (2000) 115 [hep-ph/0003004] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Braun, Nucleus nucleus interaction in the perturbative QCD, Eur. Phys. J. C 33 (2004) 113 [hep-ph/0309293] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Braun, Conformal invariant Pomeron interaction in the perurbative QCD with large-N c, Phys. Lett. B 632 (2006) 297 [hep-ph/0512057] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S. Bondarenko and L. Motyka, Solving effective field theory of interacting QCD Pomerons in the semi-classical approximation, Phys. Rev. D 75 (2007) 114015 [hep-ph/0605185] [INSPIRE].ADSGoogle Scholar
  5. [5]
    S. Bondarenko and M. Braun, Boundary conditions in the QCD nucleus-nucleus scattering problem, Nucl. Phys. A 799 (2008) 151 [arXiv:0708.3629] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Kormilitzin, E. Levin and J.S. Miller, High density QCD and nucleus-nucleus scattering deeply in the saturation region, Nucl. Phys. A 859 (2011) 87 [arXiv:1009.1329] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    C. Contreras, E. Levin and J.S. Miller, BFKL Pomeron calculus: nucleus-nucleus scattering, Nucl. Phys. A 880 (2012) 29 [arXiv:1112.4531] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Bondarenko, M. Kozlov and E. Levin, QCD saturation in the semiclassical approach, Nucl. Phys. A 727 (2003) 139 [hep-ph/0305150] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    L. Gribov, E. Levin and M. Ryskin, Semihard Processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A.H. Mueller and J.-w. Qiu, Gluon Recombination and Shadowing at Small Values of x, Nucl. Phys. B 268 (1986) 427 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].ADSGoogle Scholar
  12. [12]
    L.D. McLerran and R. Venugopalan, Greens functions in the color field of a large nucleus, Phys. Rev. D 50 (1994) 2225 [hep-ph/9402335] [INSPIRE].ADSGoogle Scholar
  13. [13]
    A. Ayala, J. Jalilian-Marian, L.D. McLerran and R. Venugopalan, Quantum corrections to the Weizsacker-Williams gluon distribution function at small x, Phys. Rev. D 53 (1996) 458 [hep-ph/9508302] [INSPIRE].ADSGoogle Scholar
  14. [14]
    L.D. McLerran and R. Venugopalan, Fock space distributions, structure functions, higher twists, and small x, Phys. Rev. D 59 (1999) 094002 [hep-ph/9809427].ADSGoogle Scholar
  15. [15]
    A.H. Mueller, Soft gluons in the infinite momentum wave function and the BFKL Pomeron, Nucl. Phys. B 415 (1994) 373 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A.H. Mueller, Unitarity and the BFKL Pomeron, Nucl. Phys. B 437 (1995) 107 [hep-ph/9408245] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    I. Balitsky, Factorization and high-energy effective action, Phys. Rev. D 60 (1999) 014020 [hep-ph/9812311] [INSPIRE].ADSGoogle Scholar
  19. [19]
    Y.V. Kovchegov, Small-x F 2 structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].ADSGoogle Scholar
  20. [20]
    J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].ADSGoogle Scholar
  21. [21]
    J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Jalilian-Marian, A. Kovner and H. Weigert, The Wilson renormalization group for low x physics: gluon evolution at finite parton density, Phys. Rev. D 59 (1998) 014015 [hep-ph/9709432] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Kovner, J.G. Milhano and H. Weigert, Relating different approaches to nonlinear QCD evolution at finite gluon density, Phys. Rev. D 62 (2000) 114005 [hep-ph/0004014] [INSPIRE].ADSGoogle Scholar
  24. [24]
    E. Iancu, A. Leonidov and L.D. McLerran, The Renormalization group equation for the color glass condensate, Phys. Lett. B 510 (2001) 133 [hep-ph/0102009] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1., Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nonlinear gluon evolution in the color glass condensate. 2., Nucl. Phys. A 703 (2002) 489 [hep-ph/0109115] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    H. Weigert, Unitarity at small Bjorken x, Nucl. Phys. A 703 (2002) 823 [hep-ph/0004044] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    L. McLerran, Summary of Theoretical Physics for ICPAQGP 2010, Nucl. Phys. A862-863 (2011) 251 [arXiv:1105.4097] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    L. McLerran, The CGC and the Glasma: Two Lectures at the Yukawa Insitute, Prog. Theor. Phys. Suppl. 187 (2011) 17 [arXiv:1011.3204] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  30. [30]
    L. McLerran, Strongly Interacting Matter at High Energy Density, Int. J. Mod. Phys. A 25 (2010) 5847 [arXiv:0812.1518] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The Color Glass Condensate, Ann. Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    F. Gelis, T. Lappi and R. Venugopalan, High energy scattering in Quantum Chromodynamics, Int. J. Mod. Phys. E 16 (2007) 2595 [arXiv:0708.0047] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    E. Kuraev, L. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    Ya.Ya. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822.Google Scholar
  35. [35]
    L. Lipatov, Small x physics in perturbative QCD, Phys. Rept. 286 (1997) 131 [hep-ph/9610276] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    L. Lipatov, The Bare Pomeron in Quantum Chromodynamics, Sov. Phys. JETP 63 (1986) 904 [INSPIRE].Google Scholar
  37. [37]
    J. Bartels and K. Kutak, A Momentum Space Analysis of the Triple Pomeron Vertex in pQCD, Eur. Phys. J. C 53 (2008) 533 [arXiv:0710.3060] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Mueller and A. Shoshi, Small x physics beyond the Kovchegov equation, Nucl. Phys. B 692 (2004) 175 [hep-ph/0402193] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    D. Kharzeev, E. Levin and L. McLerran, Parton saturation and N(part) scaling of semihard processes in QCD, Phys. Lett. B 561 (2003) 93 [hep-ph/0210332] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Mueller and D. Triantafyllopoulos, The energy dependence of the saturation momentum, Nucl. Phys. B 640 (2002) 331 [hep-ph/0205167] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    D. Triantafyllopoulos, The Energy dependence of the saturation momentum from RG improved BFKL evolution, Nucl. Phys. B 648 (2003) 293 [hep-ph/0209121] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    E. Iancu, K. Itakura and L. McLerran, Geometric scaling above the saturation scale, Nucl. Phys. A 708 (2002) 327 [hep-ph/0203137] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. Bartels and E. Levin, Solutions to the Gribov-Levin-Ryskin equation in the nonperturbative region, Nucl. Phys. B 387 (1992) 617 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Stasto, K.J. Golec-Biernat and J. Kwiecinski, Geometric scaling for the total γ p cross-section in the low x region, Phys. Rev. Lett. 86 (2001) 596 [hep-ph/0007192] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    L. McLerran and M. Praszalowicz, Saturation and Scaling of Multiplicity, Mean p T and p T Distributions from 200 GeV < \( \sqrt{s}<7 \) TeV - Addendum, Acta Phys. Polon. B 42 (2011) 99 [arXiv:1011.3403] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    L. McLerran and M. Praszalowicz, Saturation and Scaling of Multiplicity, Mean p T and p T Distributions from 200 GeV < \( \sqrt{s}<7 \) TeV, Acta Phys. Polon. B 41 (2010) 1917 [arXiv:1006.4293] [INSPIRE].Google Scholar
  47. [47]
    M. Praszalowicz, Geometrical Scaling in Hadronic Collisions, Acta Phys. Polon. B 42 (2011) 1557 [arXiv:1104.1777] [INSPIRE].CrossRefGoogle Scholar
  48. [48]
    M. Praszalowicz, Improved Geometrical Scaling at the LHC, Phys. Rev. Lett. 106 (2011) 142002 [arXiv:1101.0585] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    E. Levin and K. Tuchin, Solution to the evolution equation for high parton density QCD, Nucl. Phys. B 573 (2000) 833 [hep-ph/9908317] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    P. Hartman, Ordinary differential equations, second edition, Birkhäuser, Boston U.S.A. (1982).Google Scholar
  51. [51]
    E. Levin and M. Ryskin, Diffraction dissociation on nuclei in the QCD leading logarithmic approximation (in Russian), Yad. Fiz. 45 (1987) 234 [Sov. J. Nucl. Phys. 45 (1987) 150] [INSPIRE].Google Scholar
  52. [52]
    Y.V. Kovchegov and H. Weigert, Quark loop contribution to BFKL evolution: Running coupling and leading-N(f ) NLO intercept, Nucl. Phys. A 789 (2007) 260 [hep-ph/0612071] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    R.J. Glauber, in Lectures in Theoretical Physics Vol. 1, W.E. Brittin and L.G. Duham eds., Intersciences, New York U.S.A. (1959).Google Scholar
  54. [54]
    V. Gribov, Glauber corrections and the interaction between high-energy hadrons and nuclei, Sov. Phys. JETP 29 (1969) 483 [Zh. Eksp. Teor. Fiz. 56 (1969) 892] [INSPIRE].ADSGoogle Scholar
  55. [55]
    E. Levin, J. Miller, B. Kopeliovich and I. Schmidt, Glauber-Gribov approach for DIS on nuclei in N = 4 SYM, JHEP 02 (2009) 048 [arXiv:0811.3586] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Carlos Contreras
    • 1
  • Eugene Levin
    • 1
    • 2
  • Rodrigo Meneses
    • 3
  1. 1.Departamento de FísicaUniversidad Técnica Federico Santa María, and Centro Científico-Tecnológico de ValparaísoValparaísoChile
  2. 2.Department of Particle Physics, School of Physics and AstronomyTel Aviv UniversityTel AvivIsrael
  3. 3.Escuela de Ingeniería Civil, Facultad de IngenieríaUniversidad de ValparaísoValparaísoChile

Personalised recommendations