Advertisement

Enhanced supersymmetry from vanishing Euler number

  • Amir-Kian Kashani-Poor
  • Ruben Minasian
  • Hagen Triendl
Open Access
Article

Abstract

We argue that compactifications on Calabi-Yau threefolds with vanishing Euler number yield effective four dimensional theories exhibiting (spontaneously broken) N = 4 supersymmetry. To this end, we derive the low-energy effective action for general SU(2) structure manifolds in type IIA string theory and show its consistency with gauged N = 4 supergravity. Focusing on the special case of Calabi-Yau manifolds with vanishing Euler number, we explain the absence of perturbative corrections at the two-derivative level. In addition, we conjecture that all non-perturbative corrections are governed and constrained by the couplings of N = 4 massive gravitino multiplets.

Keywords

Flux compactifications Extended Supersymmetry Supergravity Models Nonperturbative Effects 

References

  1. [1]
    N.J. Hitchin, The geometry of three-forms in six and seven dimensions, math/0010054 [INSPIRE].
  2. [2]
    N.J. Hitchin, Stable forms and special metrics, math/0107101 [INSPIRE].
  3. [3]
    S. Chiossi and S. Salamon, The intrinsic torsion of SU(3) and G 2 structures, J. Diff. Geom. (2002) [math/0202282] [INSPIRE].
  4. [4]
    J.P. Gauntlett, D. Martelli, S. Pakis and D. Waldram, G structures and wrapped NS5-branes, Commun. Math. Phys. 247 (2004) 421 [hep-th/0205050] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  5. [5]
    P. Kaste, R. Minasian, M. Petrini and A. Tomasiello, Nontrivial RR two form field strength and SU(3) structure, Fortsch. Phys. 51 (2003) 764 [hep-th/0301063] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  6. [6]
    J.P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic torsion, Phys. Rev. D 69 (2004) 086002 [hep-th/0302158] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    M. Gualtieri, Generalized complex geometry, math/0401221 [INSPIRE].
  9. [9]
    S. Gurrieri, J. Louis, A. Micu and D. Waldram, Mirror symmetry in generalized Calabi-Yau compactifications, Nucl. Phys. B 654 (2003) 61 [hep-th/0211102] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    M. Graña, J. Louis and D. Waldram, Hitchin functionals in N = 2 supergravity, JHEP 01 (2006) 008 [hep-th/0505264] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Graña, J. Louis and D. Waldram, SU(3) × SU(3) compactification and mirror duals of magnetic fluxes, JHEP 04 (2007) 101 [hep-th/0612237] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Supersymmetric backgrounds from generalized Calabi-Yau manifolds, JHEP 08 (2004) 046 [hep-th/0406137] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    F. Witt, Generalised G 2 manifolds, Commun. Math. Phys. 265 (2006) 275 [math/0411642] [INSPIRE]. F. Witt, Special metric structures and closed forms, math/0502443 [INSPIRE].
  14. [14]
    C. Jeschek and F. Witt, Generalised G 2 - Structures and type IIB superstrings, JHEP 03 (2005) 053 [hep-th/0412280] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Generalized structures of N = 1 vacua, JHEP 11 (2005) 020 [hep-th/0505212] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    I. Antoniadis, S. Ferrara, R. Minasian and K. Narain, R 4 couplings in M and type-II theories on Calabi-Yau spaces, Nucl. Phys. B 507 (1997) 571 [hep-th/9707013] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    I. Antoniadis, R. Minasian, S. Theisen and P. Vanhove, String loop corrections to the universal hypermultiplet, Class. Quant. Grav. 20 (2003) 5079 [hep-th/0307268] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  19. [19]
    E. Thomas, Vector fields on manifolds, Bull. Amer. Math. Soc. 75 (1969) 643.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    J. Bovy, D. Lüst and D. Tsimpis, N = 1, 2 supersymmetric vacua of IIA supergravity and SU(2) structures, JHEP 08 (2005) 056 [hep-th/0506160] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    R. Reid-Edwards and B. Spanjaard, N = 4 gauged supergravity from duality-twist compactifications of string theory, JHEP 12 (2008) 052 [arXiv:0810.4699] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D. Lüst and D. Tsimpis, Classes of AdS 4 type IIA / IIB compactifications with SU(3) × SU(3) structure, JHEP 04 (2009) 111 [arXiv:0901.4474] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    H. Triendl and J. Louis, Type II compactifications on manifolds with SU(2) × SU(2) structure, JHEP 07 (2009) 080 [arXiv:0904.2993] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    J. Louis, D. Martinez-Pedrera and A. Micu, Heterotic compactifications on SU(2)-structure backgrounds, JHEP 09 (2009) 012 [arXiv:0907.3799] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    T. Danckaert, J. Louis, D. Martinez-Pedrera, B. Spanjaard and H. Triendl, The N = 4 effective action of type IIA supergravity compactified on SU(2)-structure manifolds, JHEP 08 (2011) 024 [arXiv:1104.5174] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    M.B. Schulz, A class of Calabi-Yau threefolds as manifolds of SU(2) structure, arXiv:1206.4027 [INSPIRE].
  27. [27]
    B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09 (2005) 016 [hep-th/0507289] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    J. Schon and M. Weidner, Gauged N = 4 supergravities, JHEP 05 (2006) 034 [hep-th/0602024] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    D. Cassani, P. Koerber and O. Varela, All homogeneous N = 2 M-theory truncations with supersymmetric AdS 4 vacua, JHEP 11 (2012) 173 [arXiv:1208.1262] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    D.M. Martinez Pedrera, Low-energy supergravities from heterotic compactification on reduced structure backgrounds, DESY-THESIS-2009-037 (2009).Google Scholar
  31. [31]
    J. Louis, P. Smyth and H. Triendl, Spontaneous N = 2 to N = 1 supersymmetry breaking in supergravity and type II string theory, JHEP 02 (2010) 103 [arXiv:0911.5077] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    R. Donagi, P. Gao and M.B. Schulz, Abelian fibrations, string junctions and flux/geometry duality, JHEP 04 (2009) 119 [arXiv:0810.5195] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    S. Ferrara, J.A. Harvey, A. Strominger and C. Vafa, Second quantized mirror symmetry, Phys. Lett. B 361 (1995) 59 [hep-th/9505162] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    W. Barth, C. Peters and A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. 3, Springer Verlag, Berlin Germany (1984).Google Scholar
  35. [35]
    A. Klemm and M. Mariño, Counting BPS states on the Enriques Calabi-Yau, Commun. Math. Phys. 280 (2008) 27 [hep-th/0512227] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  36. [36]
    T.W. Grimm, A. Klemm, M. Mariño and M. Weiss, Direct integration of the topological string, JHEP 08 (2007) 058 [hep-th/0702187] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    R. Gopakumar and S. Mukhi, Orbifold and orientifold compactifications of F - Theory and M - Theory to six-dimensions and four-dimensions, Nucl. Phys. B 479 (1996) 260 [hep-th/9607057] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    E. Bergshoeff, R. Kallosh, T. Ortín, D. Roest and A. Van Proeyen, New formulations of D = 10 supersymmetry and D8 - O8 domain walls, Class. Quant. Grav. 18 (2001) 3359 [hep-th/0103233] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  39. [39]
    S. Ferrara and P. van Nieuwenhuizen, Noether coupling of massive gravitinos to N = 1 supergravity, Phys. Lett. B 127 (1983) 70 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. de Roo and P. Wagemans, Partial supersymmetry breaking in N = 4 supergravity, Phys. Lett. B 177 (1986) 352 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    P. Wagemans, Breaking of N = 4 supergravity to N = 1, N = 2 at λ = 0, Phys. Lett. B 206 (1988) 241 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    V. Tsokur and Y. Zinovev, Spontaneous supersymmetry breaking in N = 4 supergravity with matter, Phys. Atom. Nucl. 59 (1996) 2192 [hep-th/9411104] [INSPIRE].MathSciNetADSGoogle Scholar
  43. [43]
    L. Andrianopoli, R. D’Auria, S. Ferrara and M. Lledó, Super Higgs effect in extended supergravity, Nucl. Phys. B 640 (2002) 46 [hep-th/0202116] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    L. Andrianopoli, R. D’Auria, S. Ferrara and M. Lledó, Duality and spontaneously broken supergravity in flat backgrounds, Nucl. Phys. B 640 (2002) 63 [hep-th/0204145] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    G. Dall’Agata, G. Villadoro and F. Zwirner, Type- IIA flux compactifications and N = 4 gauged supergravities, JHEP 08 (2009) 018 [arXiv:0906.0370] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    G. Dibitetto, A. Guarino and D. Roest, Charting the landscape of N = 4 flux compactifications, JHEP 03 (2011) 137 [arXiv:1102.0239] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    C. Horst, J. Louis and P. Smyth, Electrically gauged N = 4 supergravities in D = 4 with N =2 vacua, JHEP 03 (2013) 144 [arXiv:1212.4707] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    S. Cecotti, S. Ferrara and L. Girardello, Geometry of type II superstrings and the moduli of superconformal field theories, Int. J. Mod. Phys. A 4 (1989) 2475 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    S. Ferrara and S. Sabharwal, Quaternionic manifolds for type II superstring vacua of Calabi-Yau spaces, Nucl. Phys. B 332 (1990) 317 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    D.V. Alekseevskǐ, Classification of quaternionic spaces with transitive solvable group of motions, Math. USSR Izvestija 9 (1975) 297.ADSCrossRefGoogle Scholar
  51. [51]
    B. de Wit and A. Van Proeyen, Special geometry, cubic polynomials and homogeneous quaternionic spaces, Commun. Math. Phys. 149 (1992) 307 [hep-th/9112027] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  52. [52]
    C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2., Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    S. Ferrara, R. Minasian and A. Sagnotti, Low-energy analysis of M and F theories on Calabi-Yau threefolds, Nucl. Phys. B 474 (1996) 323 [hep-th/9604097] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    W. Taylor, TASI lectures on supergravity and string vacua in various dimensions, arXiv:1104.2051 [INSPIRE].

Copyright information

© SISSA 2013

Authors and Affiliations

  • Amir-Kian Kashani-Poor
    • 1
  • Ruben Minasian
    • 2
  • Hagen Triendl
    • 2
  1. 1.Laboratoire de Physique Théorique de l’ École Normale SupérieureParisFrance
  2. 2.Institut de Physique Théorique, CEA SaclayGif-sur-YvetteFrance

Personalised recommendations