Advertisement

Quantum critical lines in holographic phases with (un)broken symmetry

  • B. Goutéraux
  • E. Kiritsis
Open Access
Article

Abstract

All possible scaling IR asymptotics in homogeneous, translation invariant holographic phases preserving or breaking a U(1) symmetry in the IR are classified. Scale invariant geometries where the scalar extremizes its effective potential are distinguished from hyperscaling violating geometries where the scalar runs logarithmically. It is shown that the general critical saddle-point solutions are characterized by three critical exponents (θ, z, ζ). Both exact solutions as well as leading behaviors are exhibited. Using them, neutral or charged geometries realizing both fractionalized or cohesive phases are found. The generic global IR picture emerging is that of quantum critical lines, separated by quantum critical points which correspond to the scale invariant solutions with a constant scalar.

Keywords

AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 

References

  1. [1]
    C. Charmousis, B. Gouteraux, B. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    M. Lassig, Geometry of the renormalization group with an application in two-dimensions, Nucl. Phys. B 334 (1990) 652 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    D.T. Son, Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    B. Goutéraux and E. Kiritsis, Generalized Holographic Quantum Criticality at Finite Density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    B.S. Kim, Schródinger Holography with and without Hyperscaling Violation, JHEP 06 (2012) 116 [arXiv:1202.6062] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    E. Kiritsis, Lorentz violation, Gravity, Dissipation and Holography, JHEP 01 (2013) 030 [arXiv:1207.2325] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    N. Iizuka, S. Kachru, N. Kundu, P. Narayan, N. Sircar et al., Bianchi Attractors: A Classification of Extremal Black Brane Geometries, JHEP 07 (2012) 193 [arXiv:1201.4861] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    N. Iizuka, S. Kachru, N. Kundu, P. Narayan, N. Sircar et al., Extremal Horizons with Reduced Symmetry: Hyperscaling Violation, Stripes and a Classification for the Homogeneous Case, JHEP 03 (2013) 126 [arXiv:1212.1948] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Edalati, J.F. Pedraza and W. Tangarife Garcia, Quantum Fluctuations in Holographic Theories with Hyperscaling Violation, Phys. Rev. D 87 (2013) 046001 [arXiv:1210.6993] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S. Nakamura, H. Ooguri and C.-S. Park, Gravity Dual of Spatially Modulated Phase, Phys. Rev. D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140 [arXiv:1106.2004] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  18. [18]
    K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of Charged Dilaton Black Holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008)065034 [arXiv:0801.2977] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008)015 [arXiv:0810.1563] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum Criticality and Holographic Superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    S. Franco, A. Garcia-Garcia and D. Rodriguez-Gomez, A General class of holographic superconductors, JHEP 04 (2010) 092 [arXiv:0906.1214] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from Superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    F. Aprile and J.G. Russo, Models of Holographic superconductivity, Phys. Rev. D 81 (2010) 026009 [arXiv:0912.0480] [INSPIRE].ADSGoogle Scholar
  27. [27]
    Y. Liu and Y.-W. Sun, Holographic Superconductors from Einstein-Maxwell-Dilaton Gravity, JHEP 07 (2010) 099 [arXiv:1006.2726] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Salvio, Holographic Superfluids and Superconductors in Dilaton-Gravity, JHEP 09 (2012) 134 [arXiv:1207.3800] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: Part I, JHEP 02 (2008) 032 [arXiv:0707.1324] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: Part II, JHEP 02 (2008) 019 [arXiv:0707.1349] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Deconfinement and Gluon Plasma Dynamics in Improved Holographic QCD, Phys. Rev. Lett. 101 (2008) 181601 [arXiv:0804.0899] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holography and Thermodynamics of 5D Dilaton-gravity, JHEP 05 (2009) 033 [arXiv:0812.0792] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes, JHEP 04 (2009) 062 [arXiv:0901.1487] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    B. Goutéraux, J. Smolic, M. Smolic, K. Skenderis and M. Taylor, Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction, JHEP 01 (2012) 089 [arXiv:1110.2320] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    N. Iqbal, H. Liu and M. Mezei, Semi-local quantum liquids, JHEP 04 (2012) 086 [arXiv:1105.4621] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE].
  37. [37]
    B.S. Kim, E. Kiritsis and C. Panagopoulos, Holographic quantum criticality and strange metal transport, New J. Phys. 14 (2012) 043045 [arXiv:1012.3464] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S.A. Hartnoll and L. Huijse, Fractionalization of holographic Fermi surfaces, Class. Quant. Grav. 29 (2012) 194001 [arXiv:1111.2606] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    S.A. Hartnoll and R. Pourhasan, Entropy balance in holographic superconductors, JHEP 07 (2012)114 [arXiv:1205.1536] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    A. Adam, B. Crampton, J. Sonner and B. Withers, Bosonic Fractionalisation Transitions, JHEP 01 (2013) 127 [arXiv:1208.3199] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Donos and S.A. Hartnoll, Metal-insulator transition in holography, arXiv:1212.2998 [INSPIRE].
  42. [42]
    T. Faulkner, G.T. Horowitz and M.M. Roberts, New stability results for Einstein scalar gravity, Class. Quant. Grav. 27 (2010) 205007 [arXiv:1006.2387] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S.S. Gubser, Curvature singularities: The Good, the bad and the naked, Adv. Theor. Math. Phys. 4 (2000) 679 [hep-th/0002160] [INSPIRE].MathSciNetMATHGoogle Scholar
  45. [45]
    K. Goldstein, N. Iizuka, S. Kachru, S. Prakash, S.P. Trivedi and A. Westphal, Holography of Dyonic Dilaton Black Branes, JHEP 10 (2010) 027 [arXiv:1007.2490] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    E. Perlmutter, Domain Wall Holography for Finite Temperature Scaling Solutions, JHEP 02 (2011)013 [arXiv:1006.2124] [INSPIRE].ADSGoogle Scholar
  47. [47]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].ADSGoogle Scholar
  48. [48]
    G.W. Gibbons, K. Hori and P. Yi, String fluid from unstable D-branes, Nucl. Phys. B 596 (2001)136 [hep-th/0009061] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    C. Charmousis, B. Goutéraux and J. Soda, Einstein-Maxwell-Dilaton theories with a Liouville potential, Phys. Rev. D 80 (2009) 024028 [arXiv:0905.3337] [INSPIRE].ADSGoogle Scholar
  50. [50]
    S.A. Hartnoll and E. Shaghoulian, Spectral weight in holographic scaling geometries, JHEP 07 (2012) 078 [arXiv:1203.4236] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    A. Donos and S.A. Hartnoll, Universal linear in temperature resistivity from black hole superradiance, Phys. Rev. D 86 (2012) 124046 [arXiv:1208.4102] [INSPIRE].ADSGoogle Scholar
  52. [52]
    R.J. Anantua, S.A. Hartnoll, V.L. Martin and D.M. Ramirez, The Pauli exclusion principle at strong coupling: Holographic matter and momentum space, JHEP 03 (2013) 104 [arXiv:1210.1590] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Donos, J.P. Gauntlett and C. Pantelidou, Semi-local quantum criticality in string/M-theory, JHEP 03 (2013) 103 [arXiv:1212.1462] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    S.S. Gubser and F.D. Rocha, The gravity dual to a quantum critical point with spontaneous symmetry breaking, Phys. Rev. Lett. 102 (2009) 061601 [arXiv:0807.1737] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D 80 (2009)105007 [arXiv:0908.1972] [INSPIRE].ADSGoogle Scholar
  56. [56]
    G.T. Horowitz and M.M. Roberts, Zero Temperature Limit of Holographic Superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    D. Cassani and A.F. Faedo, Constructing Lifshitz solutions from AdS, JHEP 05 (2011) 013 [arXiv:1102.5344] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    W. Chemissany and J. Hartong, From D3-branes to Lifshitz Space-Times, Class. Quant. Grav. 28 (2011) 195011 [arXiv:1105.0612] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    W. Chemissany, D. Geissbuhler, J. Hartong and B. Rollier, Holographic Renormalization for z=2 Lifshitz Space-Times from AdS, Class. Quant. Grav. 29 (2012) 235017 [arXiv:1205.5777] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    C. Charmousis, B. Goutéraux and E. Kiritsis, Higher-derivative scalar-vector-tensor theories: black holes, Galileons, singularity cloaking and holography, JHEP 09 (2012) 011 [arXiv:1206.1499] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi Surfaces and Entanglement Entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    R. Casero, E. Kiritsis and A. Paredes, Chiral symmetry breaking as open string tachyon condensation, Nucl. Phys. B 787 (2007) 98 [hep-th/0702155] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    I. Iatrakis, E. Kiritsis and A. Paredes, An AdS/QCD model from Sens tachyon action, Phys. Rev. D 81 (2010) 115004 [arXiv:1003.2377] [INSPIRE].ADSGoogle Scholar
  64. [64]
    I. Iatrakis, E. Kiritsis and A. Paredes, An AdS/QCD model from tachyon condensation: II, JHEP 11 (2010) 123 [arXiv:1010.1364] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    M. Jarvinen and E. Kiritsis, Holographic Models for QCD in the Veneziano Limit, JHEP 03 (2012)002 [arXiv:1112.1261] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    T. Alho, M. Jarvinen, K. Kajantie, E. Kiritsis and K. Tuominen, On finite-temperature holographic QCD in the Veneziano limit, JHEP 01 (2013) 093 [arXiv:1210.4516] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    D. Arean, I. Iatrakis, M. Jarvinen and E. Kiritsis, V-QCD: Spectra, the dilaton and the S-parameter, Phys. Lett. B 720 (2013) 219 [arXiv:1211.6125] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    S. Harrison, S. Kachru and H. Wang, Resolving Lifshitz Horizons, arXiv:1202.6635 [INSPIRE].
  69. [69]
    J. Bhattacharya, S. Cremonini and A. Sinkovics, On the IR completion of geometries with hyperscaling violation, JHEP 02 (2013) 147 [arXiv:1208.1752] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    N. Kundu, P. Narayan, N. Sircar and S.P. Trivedi, Entangled Dilaton Dyons, arXiv:1208.2008 [INSPIRE].
  71. [71]
    A. Adams, A. Maloney, A. Sinha and S.E. Vazquez, 1/N Effects in Non-Relativistic Gauge-Gravity Duality, JHEP 03 (2009) 097 [arXiv:0812.0166] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  72. [72]
    J. Gath, J. Hartong, R. Monteiro and N.A. Obers, Holographic Models for Theories with Hyperscaling Violation, arXiv:1212.3263 [INSPIRE].
  73. [73]
    G.T. Horowitz and B. Way, Lifshitz Singularities, Phys. Rev. D 85 (2012) 046008 [arXiv:1111.1243] [INSPIRE].ADSGoogle Scholar
  74. [74]
    E. Shaghoulian, Holographic Entanglement Entropy and Fermi Surfaces, JHEP 05 (2012) 065 [arXiv:1112.2702] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  1. 1.Nordita, KTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  2. 2.APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris CitéParis Cedex 13France
  3. 3.Crete Center for Theoretical Physics, Department of PhysicsUniversity of CreteHeraklionGreece

Personalised recommendations