Advertisement

Light-like tachyon condensation in open string field theory

  • Simeon Hellerman
  • Martin Schnabl
Article

Abstract

We use open string field theory to study the dynamics of unstable branes in the bosonic string theory, in the background of a generic linear dilaton. We find a simple exact solution describing a dynamical interpolation between the perturbative vacuum and the recently discovered nonperturbative tachyon vacuum. In our solution, the open string tachyon increases exponentially along a null direction, after which nonlinearities set in and cause the solution to asymptote to a static state. In particular, the wild oscillations of the open string fields which plague the time-like rolling tachyon solution are entirely absent. Our model thus represents the first example proving that the true tachyon vacuum of open string field theory can be realized as the endpoint of a dynamical transition from the perturbative vacuum.

Keywords

Tachyon Condensation String Field Theory 

References

  1. [1]
    A. Sen, Tachyon condensation on the brane anti-brane system, JHEP 08 (1998) 012 [hep-th/9805170] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Sen, Universality of the tachyon potential, JHEP 12 (1999) 027 [hep-th/9911116] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Sen and B. Zwiebach, Tachyon condensation in string field theory, JHEP 03 (2000) 002 [hep-th/9912249] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    S. Hellerman and I. Swanson, Cosmological solutions of supercritical string theory, Phys. Rev. D 77 (2008) 126011 [hep-th/0611317] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    S. Hellerman and I. Swanson, Dimension-changing exact solutions of string theory, JHEP 09 (2007) 096 [hep-th/0612051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    S. Hellerman and I. Swanson, Cosmological unification of string theories, JHEP 07 (2008) 022 [hep-th/0612116] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    S. Hellerman and I. Swanson, Supercritical N = 2 string theory, arXiv:0709.2166 [INSPIRE].
  8. [8]
    S. Hellerman and I. Swanson, Charting the landscape of supercritical string theory, Phys. Rev. Lett. 99 (2007) 171601 [arXiv:0705.0980] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    P. Hořava and C.A. Keeler, Closed-string tachyon condensation and the worldsheet super-Higgs effect, Phys. Rev. Lett. 100 (2008) 051601 [arXiv:0709.2162] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    S. Hellerman and I. Swanson, A stable vacuum of the tachyonic E 8 string, arXiv:0710.1628 [INSPIRE].
  11. [11]
    P. Hořava and C.A. Keeler, M-theory through the looking glass: tachyon condensation in the E 8 heterotic string, Phys. Rev. D 77 (2008) 066013 [arXiv:0709.3296] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A.A. Tseytlin, String vacuum backgrounds with covariantly constant null Killing vector and 2D quantum gravity, Nucl. Phys. B 390 (1993) 153 [hep-th/9209023] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    A.A. Tseytlin, Finite σ-models and exact string solutions with Minkowski signature metric, Phys. Rev. D 47 (1993) 3421 [hep-th/9211061] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    M. Schnabl, Analytic solution for tachyon condensation in open string field theory, Adv. Theor. Math. Phys. 10 (2006) 433 [hep-th/0511286] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    M. Schnabl, Comments on marginal deformations in open string field theory, Phys. Lett. B 654 (2007) 194 [hep-th/0701248] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    M. Kiermaier, Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for marginal deformations in open string field theory, JHEP 01 (2008) 028 [hep-th/0701249] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    N. Moeller and B. Zwiebach, Dynamics with infinitely many time derivatives and rolling tachyons, JHEP 10 (2002) 034 [hep-th/0207107] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    H.-T. Yang, Stress tensors in p-adic string theory and truncated OSFT, JHEP 11 (2002) 007 [hep-th/0209197] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Fujita and H. Hata, Time dependent solution in cubic string field theory, JHEP 05 (2003) 043 [hep-th/0304163] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    N. Moeller and M. Schnabl, Tachyon condensation in open closed p-adic string theory, JHEP 01 (2004) 011 [hep-th/0304213] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    M. Fujita and H. Hata, Rolling tachyon solution in vacuum string field theory, Phys. Rev. D 70 (2004) 086010 [hep-th/0403031] [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    L. Bonora, C. Maccaferri, R. Scherer Santos and D. Tolla, Exact time-localized solutions in vacuum string field theory, Nucl. Phys. B 715 (2005) 413 [hep-th/0409063] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    A. Sen, Rolling tachyon, JHEP 04 (2002) 048 [hep-th/0203211] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Sen, Tachyon matter, JHEP 07 (2002) 065 [hep-th/0203265] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Sen, Time evolution in open string theory, JHEP 10 (2002) 003 [hep-th/0207105] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Strominger, Open string creation by S-branes, Conf. Proc. C 0208124 (2002) 20 [hep-th/0209090] [INSPIRE].Google Scholar
  27. [27]
    F. Larsen, A. Naqvi and S. Terashima, Rolling tachyons and decaying branes, JHEP 02 (2003) 039 [hep-th/0212248] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    M. Gutperle and A. Strominger, Timelike boundary Liouville theory, Phys. Rev. D 67 (2003) 126002 [hep-th/0301038] [INSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    N.D. Lambert, H. Liu and J.M. Maldacena, Closed strings from decaying D-branes, JHEP 03 (2007) 014 [hep-th/0303139] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    A. Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513 [hep-th/0410103] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    V. Balasubramanian, E. Keski-Vakkuri, P. Kraus and A. Naqvi, String scattering from decaying branes, Commun. Math. Phys. 257 (2005) 363 [hep-th/0404039] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  32. [32]
    V. Balasubramanian, N. Jokela, E. Keski-Vakkuri and J. Majumder, A thermodynamic interpretation of time for rolling tachyons, Phys. Rev. D 75 (2007) 063515 [hep-th/0612090] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A. Sen, Field theory of tachyon matter, Mod. Phys. Lett. A 17 (2002) 1797 [hep-th/0204143] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    G.T. Horowitz and A.R. Steif, Strings in strong gravitational fields, Phys. Rev. D 42 (1990) 1950 [INSPIRE].ADSGoogle Scholar
  35. [35]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N =4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    J.M. Maldacena and L. Maoz, Strings on pp waves and massive two-dimensional field theories, JHEP 12 (2002) 046 [hep-th/0207284] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    J.M. Figueroa-O’Farrill and J. Simon, Generalized supersymmetric fluxbranes, JHEP 12 (2001) 011 [hep-th/0110170] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    H. Liu, G.W. Moore and N. Seiberg, Strings in a time dependent orbifold, JHEP 06 (2002) 045 [hep-th/0204168] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    H. Liu, G.W. Moore and N. Seiberg, Strings in time dependent orbifolds, JHEP 10 (2002) 031 [hep-th/0206182] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    M. Fabinger and S. Hellerman, Stringy resolutions of null singularities, hep-th/0212223 [INSPIRE].
  41. [41]
    J. Polchinski, String theory. Volume 1: an introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998) [INSPIRE].CrossRefGoogle Scholar
  42. [42]
    L. Rastelli and B. Zwiebach, Tachyon potentials, star products and universality, JHEP 09 (2001) 038 [hep-th/0006240] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    K. Ohmori, A review on tachyon condensation in open string field theories, hep-th/0102085 [INSPIRE].
  44. [44]
    P.-M. Ho and S.-Y.D. Shih, Discrete states in light-like linear dilaton background, JHEP 01 (2008) 054 [arXiv:0711.2792] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    A. Clark, D. Freedman, A. Karch and M. Schnabl, The dual of Janus: an interface CFT, Phys. Rev. D 71 (2005) 066003 [hep-th/0407073] [INSPIRE].ADSGoogle Scholar
  46. [46]
    N. Berkovits and M. Schnabl, Yang-Mills action from open superstring field theory, JHEP 09 (2003) 022 [hep-th/0307019] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    I. Ellwood and W. Taylor, Open string field theory without open strings, Phys. Lett. B 512 (2001) 181 [hep-th/0103085] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    I. Ellwood, B. Feng, Y.-H. He and N. Moeller, The identity string field and the tachyon vacuum, JHEP 07 (2001) 016 [hep-th/0105024] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    S. Giusto and C. Imbimbo, Physical states at the tachyonic vacuum of open string field theory, Nucl. Phys. B 677 (2004) 52 [hep-th/0309164] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    I. Ellwood and M. Schnabl, Proof of vanishing cohomology at the tachyon vacuum, JHEP 02 (2007) 096 [hep-th/0606142] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    C. Imbimbo, The spectrum of open string field theory at the stable tachyonic vacuum, Nucl. Phys. B 770 (2007) 155 [hep-th/0611343] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    O.-K. Kwon, B.-H. Lee, C. Park and S.-J. Sin, Fluctuations around the tachyon vacuum in open string field theory, JHEP 12 (2007) 038 [arXiv:0709.2888] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    A. Sen and B. Zwiebach, Large marginal deformations in string field theory, JHEP 10 (2000) 009 [hep-th/0007153] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    H. Fuji, S. Nakayama and H. Suzuki, Open string amplitudes in various gauges, JHEP 01 (2007) 011 [hep-th/0609047] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for tachyon condensation with general projectors, hep-th/0611110 [INSPIRE].
  56. [56]
    M. Asano and M. Kato, New covariant gauges in string field theory, Prog. Theor. Phys. 117 (2007) 569 [hep-th/0611189] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  57. [57]
    L. Rastelli and B. Zwiebach, The off-shell Veneziano amplitude in Schnabl gauge, JHEP 01 (2008) 018 [arXiv:0708.2591] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    M. Kiermaier, A. Sen and B. Zwiebach, Linear b-gauges for open string fields, JHEP 03 (2008) 050 [arXiv:0712.0627] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    T. Erler, Marginal solutions for the superstring, JHEP 07 (2007) 050 [arXiv:0704.0930] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    Y. Okawa, Analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 084 [arXiv:0704.0936] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    E. Fuchs, M. Kroyter and R. Potting, Marginal deformations in string field theory, JHEP 09 (2007) 101 [arXiv:0704.2222] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    Y. Okawa, Real analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 082 [arXiv:0704.3612] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    I. Ellwood, Rolling to the tachyon vacuum in string field theory, JHEP 12 (2007) 028 [arXiv:0705.0013] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    N. Jokela, M. Jarvinen, E. Keski-Vakkuri and J. Majumder, Disk partition function and oscillatory rolling tachyons, J. Phys. A 41 (2008) 015402 [arXiv:0705.1916] [INSPIRE].MathSciNetGoogle Scholar
  65. [65]
    I. Kishimoto and Y. Michishita, Comments on solutions for nonsingular currents in open string field theories, Prog. Theor. Phys. 118 (2007) 347 [arXiv:0706.0409] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  66. [66]
    E. Fuchs and M. Kroyter, Marginal deformation for the photon in superstring field theory, JHEP 11 (2007) 005 [arXiv:0706.0717] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    M. Kiermaier and Y. Okawa, Exact marginality in open string field theory: a general framework, JHEP 11 (2009) 041 [arXiv:0707.4472] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    M. Kiermaier and Y. Okawa, General marginal deformations in open superstring field theory, JHEP 11 (2009) 042 [arXiv:0708.3394] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    N. Barnaby and N. Kamran, Dynamics with infinitely many derivatives: the initial value problem, JHEP 02 (2008) 008 [arXiv:0709.3968] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    B.-H. Lee, C. Park and D. Tolla, Marginal deformations as lower dimensional D-brane solutions in open string field theory, arXiv:0710.1342 [INSPIRE].
  71. [71]
    T. Takahashi, Level truncation analysis of exact solutions in open string field theory, JHEP 01 (2008) 001 [arXiv:0710.5358] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    O.-K. Kwon, Marginally deformed rolling tachyon around the tachyon vacuum in open string field theory, Nucl. Phys. B 804 (2008) 1 [arXiv:0801.0573] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    A. Bagchi and A. Sen, Tachyon condensation on separated brane-antibrane system, JHEP 05 (2008) 010 [arXiv:0801.3498] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  74. [74]
    S. Hellerman and I. Swanson, to appear.Google Scholar
  75. [75]
    P.G. Freund and M. Olson, Nonarchimedean strings, Phys. Lett. B 199 (1987) 186 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  76. [76]
    P.G. Freund and E. Witten, Adelic string amplitudes, Phys. Lett. B 199 (1987) 191 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  77. [77]
    L. Brekke, P.G. Freund, M. Olson and E. Witten, Nonarchimedean string dynamics, Nucl. Phys. B 302 (1988) 365 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  78. [78]
    D. Ghoshal and A. Sen, Tachyon condensation and brane descent relations in p-adic string theory, Nucl. Phys. B 584 (2000) 300 [hep-th/0003278] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  79. [79]
    J.A. Minahan, Mode interactions of the tachyon condensate in p-adic string theory, JHEP 03 (2001) 028 [hep-th/0102071] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  80. [80]
    N. Barnaby, T. Biswas and J.M. Cline, p-adic inflation, JHEP 04 (2007) 056 [hep-th/0612230] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  81. [81]
    L. Rastelli, A. Sen and B. Zwiebach, String field theory around the tachyon vacuum, Adv. Theor. Math. Phys. 5 (2002) 353 [hep-th/0012251] [INSPIRE].MathSciNetGoogle Scholar
  82. [82]
    D. Ghoshal, Exact noncommutative solitons in p-adic strings and BSFT, JHEP 09 (2004) 041 [hep-th/0406259] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  83. [83]
    P. Grange, Deformation of p-adic string amplitudes in a magnetic field, Phys. Lett. B 616 (2005) 135 [hep-th/0409305] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  84. [84]
    D. Ghoshal and T. Kawano, Towards p-adic string in constant B-field, Nucl. Phys. B 710 (2005) 577 [hep-th/0409311] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  85. [85]
    E. Lucas, Sur les développements en séries (in French), Bull. Soc. Math. France 6 (1878) 57.MathSciNetMATHGoogle Scholar
  86. [86]
    K. Dilcher, Sums of products of Bernoulli numbers, J. Number Theor. 60 (1996) 23.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Institute for Advanced StudyPrincetonU.S.A.
  2. 2.Kavli IPMU, The University of TokyoChibaJapan
  3. 3.Institute of Physics of the AS CRPrague 8Czech Republic

Personalised recommendations