Solutions of the generic non-compact Weyl equation



In this paper, solutions of the generic non-compact Weyl equation are obtained. In particular, by identifying a suitable similarity transformation and introducing a non-trivial change of variables we are able to implement azimuthal dependence on the solutions of the diagonal non-compact Weyl equation derived in [1]. We also discuss some open questions related to the construction of infinite BPS monopole configurations.


Solitons Monopoles and Instantons Integrable Equations in Physics 


  1. [1]
    A. Doikou and T. Ioannidou, The Non-compact Weyl equation, JHEP 04 (2011) 072 [arXiv:1012.5643] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    W. Nahm, The construction of all self-dual multimonopoles by the ADHM method, in Monopoles in quantum field theory, N.S. Craigie, P. Goddard and W. Nahm eds., World Scientific, Singapore (1982).Google Scholar
  3. [3]
    N.S. Manton and P.M. Sutcliffe, Topological solitons, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2004).Google Scholar
  4. [4]
    A. Doikou and T. Ioannidou, Weyl equation and (Non)-commutative SU(n + 1) BPS monopoles, JHEP 08 (2010) 105 [arXiv:1005.5345] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    S. Rankin, SU(∞) and the large-N limit, Annals Phys. 218 (1992) 14 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  6. [6]
    A. Doikou and T. Ioannidou, BPS monopoles and open spin chains, J. Math. Phys. 52 (2011) 093508 [arXiv:1010.5076] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    N.J. Hitchin, Monopoles and geodesics, Commun. Math. Phys. 83 (1982) 579 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  8. [8]
    E. Floratos, J. Iliopoulos and G. Tiktopoulos, A note on SU(∞) classical Yang-Mills theory, Phys. Lett. B 217 (1989) 285 [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    R. Ward, Linearization of the SU(∞) Nahm equations, Phys. Lett. B 234 (1990) 81 [INSPIRE].ADSGoogle Scholar
  10. [10]
    H. Garcia-Compean and J.F. Plebanski, On the Weyl-Wigner-Moyal description of SU(∞) Nahm equations, Phys. Lett. A 234 (1997) 5 [hep-th/9612221] [INSPIRE].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of Engineering SciencesUniversity of PatrasPatrasGreece
  2. 2.Department of Mathematics, Physics and Computational Sciences, Faculty of EngineeringAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations