Factorisation of \( \mathcal{N} = 2 \) theories on the squashed 3-sphere

  • Sara Pasquetti


Partition functions of \( \mathcal{N} = 2 \) theories on the squashed 3-sphere have been recently shown to localise to matrix integrals. By explicitly evaluating the matrix integral we show that abelian partition functions can be expressed as a sum of products of two blocks. We identify the first block with the partition function of the vortex theory, with equivariant parameter \( \hbar = 2\pi i{b^2} \), defined on \( {\mathbb{R}^2} \times {S_1} \) R corresponding to the b→0 degeneration of the ellipsoid. The second block gives the partition function of the vortex theory, with equivariant parameter \( {\hbar^L} = {{{2\pi i}} \left/ {{{b^2}}} \right.} \), on the dual \( {\mathbb{R}^2} \times {S_1} \) corresponding to the 1/b→0 degeneration. The ellipsoid partition appears to provide the \( \hbar \to {\hbar^L} \) modular invariant non-perturbative completion of the vortex theory.


Supersymmetry and Duality Chern-Simons Theories Topological Strings String Duality 


  1. [1]
    N. Hama, K. Hosomichi and S. Lee, SUSY gauge theories on squashed three-spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, arXiv:0712.2824 [INSPIRE].
  3. [3]
    A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    T. Dimofte, S. Gukov and L. Hollands, Vortex counting and Lagrangian 3-manifolds, Lett. Math. Phys. 98 (2011) 225 [arXiv:1006.0977] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  5. [5]
    T. Dimofte and S. Gukov, Chern-Simons theory and S-duality, arXiv:1106.4550 [INSPIRE].
  6. [6]
    T. Dimofte, D. Gaiotto and S. Gukov, Gauge theories labelled by three-manifolds, arXiv:1108.4389 [INSPIRE].
  7. [7]
    S. Shadchin, On F-term contribution to effective action, JHEP 08 (2007) 052 [hep-th/0611278] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    B. Eynard and M. Mariño, A holomorphic and background independent partition function for matrix models and topological strings, J. Geom. Phys. 61 (2011) 1181 [arXiv:0810.4273] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  9. [9]
    G. Bonelli, A. Tanzini and J. Zhao, Vertices, vortices and interacting surface operators, arXiv:1102.0184 [INSPIRE].
  10. [10]
    H. Ooguri, A. Strominger and C. Vafa, Black hole attractors and the topological string, Phys. Rev. D 70 (2004) 106007 [hep-th/0405146] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    V. Spiridonov and G. Vartanov, Elliptic hypergeometry of supersymmetric dualities ii. Orthogonal groups, knots and vortices, arXiv:1107.5788 [INSPIRE].
  12. [12]
    K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE].
  13. [13]
    M. Aganagic and C. Vafa, Mirror symmetry, D-branes and counting holomorphic discs, hep-th/0012041 [INSPIRE].
  14. [14]
    M. Aganagic, A. Klemm and C. Vafa, Disk instantons, mirror symmetry and the duality web, Z. Naturforsch. A 57 (2002) 1 [hep-th/0105045] [INSPIRE].MathSciNetGoogle Scholar
  15. [15]
    V. Bouchard, A. Klemm, M. Mariño and S. Pasquetti, Remodeling the B-model, Commun. Math. Phys. 287 (2009) 117 [arXiv:0709.1453] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  16. [16]
    C. Kozcaz, S. Pasquetti and N. Wyllard, A & B model approaches to surface operators and Toda theories, JHEP 08 (2010) 042 [arXiv:1004.2025] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The topological vertex, Commun. Math. Phys. 254 (2005) 425 [hep-th/0305132] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  18. [18]
    A. Iqbal and A.-K. Kashani-Poor, The vertex on a strip, Adv. Theor. Math. Phys. 10 (2006) 317 [hep-th/0410174] [INSPIRE].MathSciNetMATHGoogle Scholar
  19. [19]
    Y. Tachikawa, Five-dimensional Chern-Simons terms and Nekrasovs instanton counting, JHEP 02 (2004) 050 [hep-th/0401184] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    A. Iqbal and A.-K. Kashani-Poor, SU(N ) geometries and topological string amplitudes, Adv. Theor. Math. Phys. 10 (2006) 1 [hep-th/0306032] [INSPIRE].MathSciNetMATHGoogle Scholar
  21. [21]
    S. Benvenuti and S. Pasquetti, 3D-partition functions on the sphere: exact evaluation and mirror symmetry, arXiv:1105.2551 [INSPIRE].
  22. [22]
    Y. Terashima and M. Yamazaki, SL(2, R) Chern-Simons, Liouville and gauge theory on duality walls, JHEP 08 (2011) 135 [arXiv:1103.5748] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Cecotti, C. Cordova and C. Vafa, Braids, walls and mirrors, arXiv:1110.2115 [INSPIRE].
  24. [24]
    C. Beem, T. Dimofte and S. Pasquetti, Holomorphic blocks in 3d, to appear.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.School of PhysicsQueen Mary University of LondonLondonU.K
  2. 2.Pure Mathematics section, Huxley BuildingImperial CollegeLondonU.K

Personalised recommendations