Neutrino propagation in noncommutative spacetimes

  • R. Horvat
  • A. Ilakovac
  • P. Schupp
  • J. Trampetić
  • J. You


One-loop θ-exact quantum corrections to the neutrino propagator are computed in noncommutative U(1) gauge-theory based on Seiberg-Witten maps. Our closed form results show that the one-loop correction contains a hard 1/ǫ UV divergence, as well as a logarithmic IR-divergent term of the type ln \( \sqrt {{{{\left( {\theta p} \right)}^{{2}}}}} \), thus considerably softening the usual UV/IR mixing phenomenon. We show that both of these problematic terms vanish for a certain choice of the noncommutative parameter θ which preserves unitarity. We find non-perturbative modifications of the neutrino dispersion relations which are assymp-totically independent of the scale of noncommutativity in both the low and high energy limits and may allow superluminal propagation. Finally, we demonstrate how the prodigious freedom in Seiberg-Witten maps may be used to affect neutrino propagation in a profound way.


Neutrino Physics Non-Commutative Geometry 


  1. [1]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    C. Martin and D. Sánchez-Ruiz, The one loop UV divergent structure of U(1) Yang-Mills theory on noncommutative R4, Phys. Rev. Lett. 83 (1999) 476 [hep-th/9903077] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  3. [3]
    M. Ettefaghi, M. Haghighat and R. Mohammadi, Noncommutative QED + QCD and β-function for QED, arXiv:1010.0906 [INSPIRE].
  4. [4]
    T. Filk, Divergencies in a field theory on quantum space, Phys. Lett. B 376 (1996) 53 [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    H. Grosse and R. Wulkenhaar, Renormalization of φ4 theory on noncommutative R4 in the matrix base, Commun. Math. Phys. 256 (2005) 305 [hep-th/0401128] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  6. [6]
    J. Magnen, V. Rivasseau and A. Tanasa, Commutative limit of a renormalizable noncommutative model, Europhys. Lett. 86 (2009) 11001 [arXiv:0807.4093] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Meljanac, A. Samsarov, J. Trampetić and M. Wohlgenannt, Scalar field propagation in the φ4 kappa-Minkowski model, JHEP 12 (2011) 010 [arXiv:1111.5553] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    X. Calmet, B. Jurčo, P. Schupp, J. Wess and M. Wohlgenannt, The standard model on non-commutative space-time, Eur. Phys. J. C 23 (2002) 363 [hep-ph/0111115] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    W. Behr et al., The Z → γγ,gg decays in the noncommutative standard model, Eur. Phys. J. C 29 (2003) 441 [hep-ph/0202121] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    P. Aschieri, B. Jurčo, P. Schupp and J. Wess, Noncommutative GUTs, standard model and C,P,T, Nucl. Phys. B 651 (2003) 45 [hep-th/0205214] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Schupp, J. Trampetić, J. Wess and G. Raffelt, The photon neutrino interaction in noncommutative gauge field theory and astrophysical bounds, Eur. Phys. J. C 36 (2004) 405 [hep-ph/0212292] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    P. Minkowski, P. Schupp and J. Trampetić, Neutrino dipole moments and charge radii in non-commutative space-time, Eur. Phys. J. C 37 (2004) 123 [hep-th/0302175] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Bichl, J. Grimstrup, L. Popp, M. Schweda and R. Wulkenhaar, Perturbative analysis of the Seiberg-Witten map, Int. J. Mod. Phys. A 17 (2002) 2219 [hep-th/0102044] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    A. Bichl et al., Renormalization of the noncommutative photon selfenergy to all orders via Seiberg-Witten map, JHEP 06 (2001) 013 [hep-th/0104097] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    J.M. Grimstrup and R. Wulkenhaar, Quantisation of theta expanded noncommutative QED, Eur. Phys. J. C 26 (2002) 139 [hep-th/0205153] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    R. Banerjee and S. Ghosh, Seiberg-Witten map and the axial anomaly in noncommutative field theory, Phys. Lett. B 533 (2002) 162 [hep-th/0110177] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    C. Martin, The gauge anomaly and the Seiberg-Witten map, Nucl. Phys. B 652 (2003) 72 [hep-th/0211164] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    F. Brandt, C. Martin and F.R. Ruiz, Anomaly freedom in Seiberg-Witten noncommutative gauge theories, JHEP 07 (2003) 068 [hep-th/0307292] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Burić, V. Radovanović and J. Trampetić, The one-loop renormalization of the gauge sector in the noncommutative standard model, JHEP 03 (2007) 030 [hep-th/0609073] [INSPIRE].ADSGoogle Scholar
  20. [20]
    D. Latas, V. Radovanović and J. Trampetić, Non-commutative SU(N) gauge theories and asymptotic freedom, Phys. Rev. D 76 (2007) 085006 [hep-th/0703018] [INSPIRE].ADSGoogle Scholar
  21. [21]
    M. Burić, D. Latas, V. Radovanović and J. Trampetić, The absence of the 4ψ divergence in noncommutative chiral models, Phys. Rev. D 77 (2008) 045031 [arXiv:0711.0887] [INSPIRE].ADSGoogle Scholar
  22. [22]
    C. Martin and C. Tamarit, Noncommutative GUT inspired theories and the UV finiteness of the fermionic four point functions, Phys. Rev. D 80 (2009) 065023 [arXiv:0907.2464] [INSPIRE].ADSGoogle Scholar
  23. [23]
    C. Martin and C. Tamarit, Renormalisability of noncommutative GUT inspired field theories with anomaly safe groups, JHEP 12 (2009) 042 [arXiv:0910.2677] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    C. Tamarit, Noncommutative GUT inspired theories with U(1), SU(N ) groups and their renormalisability, Phys. Rev. D 81 (2010) 025006 [arXiv:0910.5195] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Burić, D. Latas, V. Radovanović and J. Trampetić, Chiral fermions in noncommutative electrodynamics: Renormalizability and dispersion, Phys. Rev. D 83 (2011) 045023 [arXiv:1009.4603] [INSPIRE].ADSGoogle Scholar
  26. [26]
    T. Ohl and J. Reuter, Testing the noncommutative standard model at a future photon collider, Phys. Rev. D 70 (2004) 076007 [hep-ph/0406098] [INSPIRE].ADSGoogle Scholar
  27. [27]
    B. Melic, K. Passek-Kumericki and J. Trampetić, K → πγ decay and space-time noncommutativity, Phys. Rev. D 72 (2005) 057502 [hep-ph/0507231] [INSPIRE].ADSGoogle Scholar
  28. [28]
    C. Tamarit and J. Trampetić, Noncommutative fermions and quarkonia decays, Phys. Rev. D 79 (2009) 025020 [arXiv:0812.1731] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Alboteanu, T. Ohl and R. Ruckl, Probing the noncommutative standard model at hadron colliders, Phys. Rev. D 74 (2006) 096004 [hep-ph/0608155] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A. Alboteanu, T. Ohl and R. Ruckl, The noncommutative standard model at the ILC, Acta Phys. Polon. B 38 (2007) 3647 [arXiv:0709.2359] [INSPIRE].ADSGoogle Scholar
  31. [31]
    M. Burić, D. Latas, V. Radovanović and J. Trampetić, Improved Z → γγ decay in the renormalizable gauge sector of the noncommutative standard model, Phys. Rev. D 75 (2007) 097701 [hep-ph/0611299] [INSPIRE].ADSGoogle Scholar
  32. [32]
    T. Mehen and M.B. Wise, Generalized *-products, Wilson lines and the solution of the Seiberg-Witten equations, JHEP 12 (2000) 008 [hep-th/0010204] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    B. Jurčo, P. Schupp and J. Wess, NonAbelian noncommutative gauge theory via noncommutative extra dimensions, Nucl. Phys. B 604 (2001) 148 [hep-th/0102129] [INSPIRE].ADSGoogle Scholar
  34. [34]
    Y. Okawa and H. Ooguri, An exact solution to Seiberg-Witten equation of noncommutative gauge theory, Phys. Rev. D 64 (2001) 046009 [hep-th/0104036] [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    G. Barnich, F. Brandt and M. Grigoriev, Local BRST cohomology and Seiberg-Witten maps in noncommutative Yang-Mills theory, Nucl. Phys. B 677 (2004) 503 [hep-th/0308092] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    R. Jackiw and S. Pi, Covariant coordinate transformations on noncommutative space, Phys. Rev. Lett. 88 (2002) 111603 [hep-th/0111122] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    J. Zeiner, Noncommutative quantumelectrodynamics from Seiberg-Witten Maps to all orders in Θμν , Ph.D. Thesis, Würzburg University, Würzburg Germany (2007).Google Scholar
  38. [38]
    P. Schupp and J. You, UV/IR mixing in noncommutative QED defined by Seiberg-Witten map, JHEP 08 (2008) 107 [arXiv:0807.4886] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    R. Horvat, A. Ilakovac, J. Trampetić and J. You, On UV/IR mixing in noncommutative gauge field theories, JHEP 12 (2011) 081 [arXiv:1109.2485] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R. Horvat, D. Kekez and J. Trampetić, Spacetime noncommutativity and ultra-high energy cosmic ray experiments, Phys. Rev. D 83 (2011) 065013 [arXiv:1005.3209] [INSPIRE].ADSGoogle Scholar
  41. [41]
    R. Horvat, D. Kekez, P. Schupp, J. Trampetić and J. You, Photon-neutrino interaction in theta-exact covariant noncommutative field theory, Phys. Rev. D 84 (2011) 045004 [arXiv:1103.3383] [INSPIRE].ADSGoogle Scholar
  42. [42]
    A. Grozin, Lectures on perturbative HQET.1., hep-ph/0008300 [INSPIRE].
  43. [43]
    A. Matusis, L. Susskind and N. Toumbas, The IR/UV connection in the noncommutative gauge theories, JHEP 12 (2000) 002 [hep-th/0002075] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    R. Horvat, A. Ilakovac, P. Schupp, J. Trampetić and J. You, Yukawa couplings and seesaw neutrino masses in noncommutative gauge theory, arXiv:1109.3085 [INSPIRE].
  45. [45]
    M.M. Ettefaghi and M. Haghighat, Massive neutrino in non-commutative space-time, Phys. Rev. D 77 (2008) 056009 [arXiv:0712.4034] [INSPIRE].ADSGoogle Scholar
  46. [46]
    J. Gomis and T. Mehen, Space-time noncommutative field theories and unitarity, Nucl. Phys. B 591 (2000) 265 [hep-th/0005129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
  48. [48]
    M. Hayakawa, Perturbative analysis on infrared and ultraviolet aspects of noncommutative QED on R 4, hep-th/9912167 [INSPIRE].
  49. [49]
    M. Hayakawa, Perturbative analysis on infrared aspects of noncommutative QED on R 4, Phys. Lett. B 478 (2000) 394 [hep-th/9912094] [INSPIRE].MathSciNetADSGoogle Scholar
  50. [50]
    M. Hayakawa, Perturbative ultraviolet and infrared dynamics of noncommutative quantum field theory, hep-th/0009098 [INSPIRE].
  51. [51]
    F. Brandt, A.K. Das and J. Frenkel, General structure of the photon selfenergy in noncommutative QED, Phys. Rev. D 65 (2002) 085017 [hep-th/0112127] [INSPIRE].ADSGoogle Scholar
  52. [52]
    F. Brandt, A.K. Das and J. Frenkel, Dispersion relations for the selfenergy in noncommutative field theories, Phys. Rev. D 66 (2002) 065017 [hep-th/0206058] [INSPIRE].MathSciNetADSGoogle Scholar
  53. [53]
    R.J. Szabo, Quantum gravity, field theory and signatures of noncommutative spacetime, Gen. Rel. Grav. 42 (2010) 1 [arXiv:0906.2913] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  54. [54]
    R. Horvat and J. Trampetić, Constraining noncommutative field theories with holography, JHEP 01 (2011) 112 [arXiv:1009.2933] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    OPERA collaboration, T. Adam et al., Measurement of the neutrino velocity with the OPERA detector in the CNGS beam, arXiv:1109.4897 [INSPIRE].
  56. [56]
  57. [57]
    KAMIOKANDE-II collaboration, K. Hirata et al., Observation of a Neutrino Burst from the Supernova SN 1987a, Phys. Rev. Lett. 58 (1987) 1490 [INSPIRE]ADSCrossRefGoogle Scholar
  58. [58]
    R. Bionta et al., Observation of a Neutrino Burst in Coincidence with Supernova SN 1987a in the Large Magellanic Cloud, Phys. Rev. Lett. 58 (1987) 1494 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M.J. Longo, Tests of relativity from SN1987a, Phys. Rev. D 36 (1987) 3276 [INSPIRE].ADSGoogle Scholar
  60. [60]
    A.G. Cohen and S.L. Glashow, Pair creation constrains superluminal neutrino propagation, Phys. Rev. Lett. 107 (2011) 181803 [arXiv:1109.6562] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • R. Horvat
    • 1
  • A. Ilakovac
    • 2
  • P. Schupp
    • 3
  • J. Trampetić
    • 1
    • 4
  • J. You
    • 1
  1. 1.Rudjer Bošković InstituteZagrebCroatia
  2. 2.Faculty of ScienceUniversity of ZagrebZagrebCroatia
  3. 3.Center for Mathematics, Modeling and ComputingJacobs University BremenBremenGermany
  4. 4.Max-Planck-Institut für Physik, (Werner-Heisenberg-Institut)MünchenGermany

Personalised recommendations