Advertisement

Light sterile neutrinos and short baseline neutrino oscillation anomalies

  • JiJi Fan
  • Paul Langacker
Article

Abstract

We study two possible explanations for short baseline neutrino oscillation anomalies, such as the LSND and MiniBooNE anti-neutrino data, and for the reactor anomaly. The first scenario is the mini-seesaw mechanism with two eV-scale sterile neutrinos. We present both analytic formulas and numerical results showing that this scenario could account for the short baseline and reactor anomalies and is consistent with the observed masses and mixings of the three active neutrinos. We also show that this scenario could arise naturally from an effective theory containing a TeV-scale VEV, which could be related to other TeV-scale physics. The minimal version of the mini-seesaw relates the active-sterile mixings to five real parameters and favors an inverted hierarchy. It has the interesting property that the effective Majorana mass for neutrinoless double beta decay vanishes, while the effective masses relevant to tritium beta decay and to cosmology are respectively around 0.2 and 2.4 eV. The second scenario contains only one eV-scale sterile neutrino but with an effective non-unitary mixing matrix between the light sterile and active neutrinos. We find that though this may explain the anomalies, if the non-unitarity originates from a heavy sterile neutrino with a large (fine-tuned) mixing angle, this scenario is highly constrained by cosmological and laboratory observations.

Keywords

Neutrino Physics Beyond Standard Model 

References

  1. [1]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  2. [2]
    LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].ADSGoogle Scholar
  3. [3]
    KARMEN collaboration, B. Armbruster et al., Upper limits for neutrino oscillations muon-anti-neutrino → electron-anti-neutrino from muon decay at rest, Phys. Rev. D 65 (2002) 112001 [hep-ex/0203021] [INSPIRE].ADSGoogle Scholar
  4. [4]
    E. Church, K. Eitel, G.B. Mills and M. Steidl, Statistical analysis of different muon-anti-neutrino → electron-anti-neutrino searches, Phys. Rev. D 66 (2002) 013001 [hep-ex/0203023] [INSPIRE].ADSGoogle Scholar
  5. [5]
    MiniBooNE collaboration, A. Aguilar-Arevalo et al., Unexplained excess of electron-like events from a 1 GeV neutrino beam, Phys. Rev. Lett. 102 (2009) 101802 [arXiv:0812.2243] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    The MiniBooNE collaboration, A. Aguilar-Arevalo et al., Event excess in the MiniBooNE search for \( {\overline \nu_{\mu }} \to {\overline \nu_e} \) oscillations, Phys. Rev. Lett. 105 (2010) 181801 [arXiv:1007.1150] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    MiniBooNE collaboration, Z. Djurcic, MiniBooNE oscillation results 2011, arXiv:1201.1519 [INSPIRE].
  8. [8]
    G. Mention, M. Fechner, T. Lasserre, T. Mueller, D. Lhuillier, et al., The reactor antineutrino anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].ADSGoogle Scholar
  9. [9]
    E. Akhmedov and T. Schwetz, MiniBooNE and LSND data: non-standard neutrino interactions in a (3 + 1) scheme versus (3 + 2) oscillations, JHEP 10 (2010) 115 [arXiv:1007.4171] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Kopp, M. Maltoni and T. Schwetz, Are there sterile neutrinos at the eV scale?, Phys. Rev. Lett. 107 (2011) 091801 [arXiv:1103.4570] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    C. Giunti and M. Laveder, 3 + 1 and 3 + 2 sterile neutrino fits, Phys. Rev. D 84 (2011) 073008 [arXiv:1107.1452] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. de Gouvêa, See-saw energy scale and the LSND anomaly, Phys. Rev. D 72 (2005) 033005 [hep-ph/0501039] [INSPIRE].ADSGoogle Scholar
  13. [13]
    J. Hamann, S. Hannestad, G.G. Raffelt, I. Tamborra and Y.Y. Wong, Cosmology seeking friendship with sterile neutrinos, Phys. Rev. Lett. 105 (2010) 181301 [arXiv:1006.5276] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A.E. Nelson, Effects of CP-violation from neutral heavy fermions on neutrino oscillations and the LSND/MiniBooNE anomalies, Phys. Rev. D 84 (2011) 053001 [arXiv:1010.3970] [INSPIRE].ADSGoogle Scholar
  15. [15]
    P. Langacker and D. London, Lepton number violation and massless nonorthogonal neutrinos, Phys. Rev. D 38 (1988) 907 [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Antusch, C. Biggio, E. Fernandez-Martinez, M. Gavela and J. Lopez-Pavon, Unitarity of the leptonic mixing matrix, JHEP 10 (2006) 084 [hep-ph/0607020] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    E. Fernandez-Martinez, M. Gavela, J. Lopez-Pavon and O. Yasuda, CP-violation from non-unitary leptonic mixing, Phys. Lett. B 649 (2007) 427 [hep-ph/0703098] [INSPIRE].ADSGoogle Scholar
  18. [18]
    SAGE collaboration, J. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: results for the 2002-2007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [INSPIRE].ADSGoogle Scholar
  19. [19]
    F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [arXiv:1001.2731] [INSPIRE].ADSGoogle Scholar
  20. [20]
    C. Giunti and M. Laveder, Statistical significance of the gallium anomaly, Phys. Rev. C 83 (2011) 065504 [arXiv:1006.3244] [INSPIRE].ADSGoogle Scholar
  21. [21]
    J. Conrad and M. Shaevitz, Limits on electron neutrino disappearance from the KARMEN and LSND ν e - Carbon cross section data, Phys. Rev. D 85 (2012) 013017 [arXiv:1106.5552] [INSPIRE].ADSGoogle Scholar
  22. [22]
    M. Maltoni and T. Schwetz, Testing the statistical compatibility of independent data sets, Phys. Rev. D 68 (2003) 033020 [hep-ph/0304176] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Gonzalez-Garcia and Y. Nir, Neutrino masses and mixing: evidence and implications, Rev. Mod. Phys. 75 (2003) 345 [hep-ph/0202058] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R. Mohapatra, S. Antusch, K. Babu, G. Barenboim, M.-C. Chen, et al., Theory of neutrinos: a white paper, Rept. Prog. Phys. 70 (2007) 1757 [hep-ph/0510213] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Gonzalez-Garcia and M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    P. Langacker, The standard model and beyond, Taylor and Francis, Boca Raton U.S.A. (2010).Google Scholar
  27. [27]
    P. Langacker, A mechanism for ordinary sterile neutrino mixing, Phys. Rev. D 58 (1998) 093017 [hep-ph/9805281] [INSPIRE].ADSGoogle Scholar
  28. [28]
    R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-brane instantons in type II orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    P. Langacker, Neutrino masses from the top down, arXiv:1112.5992 [INSPIRE].
  30. [30]
    M.-C. Chen, A. de Gouvêa and B.A. Dobrescu, Gauge trimming of neutrino masses, Phys. Rev. D 75 (2007) 055009 [hep-ph/0612017] [INSPIRE].ADSGoogle Scholar
  31. [31]
    J. Sayre, S. Wiesenfeldt and S. Willenbrock, Sterile neutrinos and global symmetries, Phys. Rev. D 72 (2005) 015001 [hep-ph/0504198] [INSPIRE].ADSGoogle Scholar
  32. [32]
    P. Langacker, The physics of heavy Zgauge bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R. Foot and R. Volkas, Neutrino physics and the mirror world: how exact parity symmetry explains the solar neutrino deficit, the atmospheric neutrino anomaly and the LSND experiment, Phys. Rev. D 52 (1995) 6595 [hep-ph/9505359] [INSPIRE].ADSGoogle Scholar
  34. [34]
    Z.G. Berezhiani and R.N. Mohapatra, Reconciling present neutrino puzzles: sterile neutrinos as mirror neutrinos, Phys. Rev. D 52 (1995) 6607 [hep-ph/9505385] [INSPIRE].ADSGoogle Scholar
  35. [35]
    G. Dvali and Y. Nir, Naturally light sterile neutrinos in gauge mediated supersymmetry breaking, JHEP 10 (1998) 014 [hep-ph/9810257] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    N. Arkani-Hamed and Y. Grossman, Light active and sterile neutrinos from compositeness, Phys. Lett. B 459 (1999) 179 [hep-ph/9806223] [INSPIRE].ADSGoogle Scholar
  37. [37]
    T. Appelquist and R. Shrock, Neutrino masses in theories with dynamical electroweak symmetry breaking, Phys. Lett. B 548 (2002) 204 [hep-ph/0204141] [INSPIRE].ADSGoogle Scholar
  38. [38]
    K.L. McDonald, Light neutrinos from a mini-seesaw mechanism in warped space, Phys. Lett. B 696 (2011) 266 [arXiv:1010.2659] [INSPIRE].ADSGoogle Scholar
  39. [39]
    E. Ma, Neutrino masses in an extended gauge model with E 6 particle content, Phys. Lett. B 380 (1996) 286 [hep-ph/9507348] [INSPIRE].ADSGoogle Scholar
  40. [40]
    F. Borzumati, K. Hamaguchi and T. Yanagida, Supersymmetric seesaw model for the (1 + 3) scheme of neutrino masses, Phys. Lett. B 497 (2001) 259 [hep-ph/0011141] [INSPIRE].ADSGoogle Scholar
  41. [41]
    K. Babu and G. Seidl, Chiral gauge models for light sterile neutrinos, Phys. Rev. D 70 (2004) 113014 [hep-ph/0405197] [INSPIRE].ADSGoogle Scholar
  42. [42]
    H. Zhang, Light sterile neutrino in the minimal extended seesaw, arXiv:1110.6838 [INSPIRE].
  43. [43]
    J. Barry, W. Rodejohann and H. Zhang, Light sterile neutrinos: models and phenomenology, JHEP 07 (2011) 091 [arXiv:1105.3911] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Barry, W. Rodejohann and H. Zhang, Sterile neutrinos for warm dark matter and the reactor anomaly in flavor symmetry models, JCAP 01 (2012) 052 [arXiv:1110.6382] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J. Casas and A. Ibarra, Oscillating neutrinos and muon → e, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A.Y. Smirnov and R. Zukanovich Funchal, Sterile neutrinos: direct mixing effects versus induced mass matrix of active neutrinos, Phys. Rev. D 74 (2006) 013001 [hep-ph/0603009] [INSPIRE].ADSGoogle Scholar
  47. [47]
    A. Donini, P. Hernández, J. Lopez-Pavon and M. Maltoni, Minimal models with light sterile neutrinos, JHEP 07 (2011) 105 [arXiv:1106.0064] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Blennow and E. Fernandez-Martinez, Parametrization of seesaw models and light sterile neutrinos, Phys. Lett. B 704 (2011) 223 [arXiv:1107.3992] [INSPIRE].ADSGoogle Scholar
  49. [49]
    Z.-Z. Xing, A full parametrization of the 6 × 6 flavor mixing matrix in the presence of three light or heavy sterile neutrinos, Phys. Rev. D 85 (2012) 013008 [arXiv:1110.0083] [INSPIRE].ADSGoogle Scholar
  50. [50]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  51. [51]
    B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP 26 (1968) 984 [INSPIRE].ADSGoogle Scholar
  52. [52]
    P. Harrison, D. Perkins and W. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].ADSGoogle Scholar
  53. [53]
    E. Ma, A 4 symmetry and neutrinos with very different masses, Phys. Rev. D 70 (2004) 031901 [hep-ph/0404199] [INSPIRE].ADSGoogle Scholar
  54. [54]
    T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Maltoni and T. Schwetz, Sterile neutrino oscillations after first MiniBooNE results, Phys. Rev. D 76 (2007) 093005 [arXiv:0705.0107] [INSPIRE].ADSGoogle Scholar
  58. [58]
    C. Giunti and M. Laveder, Status of 3 + 1 neutrino mixing, Phys. Rev. D 84 (2011) 093006 [arXiv:1109.4033] [INSPIRE].ADSGoogle Scholar
  59. [59]
    C. Kraus, B. Bornschein, L. Bornschein, J. Bonn, B. Flatt, et al., Final results from phase II of the Mainz neutrino mass search in tritium β decay, Eur. Phys. J. C 40 (2005) 447 [hep-ex/0412056] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    V. Lobashev, V. Aseev, A. Belesev, A. Berlev, E. Geraskin et al., Direct search for neutrino mass and anomaly in the tritium β-spectrum: status ofTroitsk neutrino massexperiment, Nucl. Phys. Proc. Suppl. 91 (2001) 280.ADSCrossRefGoogle Scholar
  61. [61]
    KATRIN collaboration, T. Thummler, Direct neutrino mass measurements, Phys. Part. Nucl. 42 (2011) 590 [INSPIRE].CrossRefGoogle Scholar
  62. [62]
    A. de Gouvêa, J. Jenkins and N. Vasudevan, Neutrino phenomenology of very low-energy seesaws, Phys. Rev. D 75 (2007) 013003 [hep-ph/0608147] [INSPIRE].ADSGoogle Scholar
  63. [63]
    H. Klapdor-Kleingrothaus and I. Krivosheina, The evidence for the observation of 0νββ decay: the identification of 0νββ events from the full spectra, Mod. Phys. Lett. A 21 (2006) 1547 [INSPIRE].ADSGoogle Scholar
  64. [64]
    CUORICINO collaboration, C. Arnaboldi et al., Results from a search for the 0 neutrino ββ-decay of Te-130, Phys. Rev. C 78 (2008) 035502 [arXiv:0802.3439] [INSPIRE].ADSGoogle Scholar
  65. [65]
    CUORE collaboration, C. Bucci, Final results of Cuoricino and status of CUORE, Nucl. Phys. Proc. Suppl. 217 (2011) 41.ADSCrossRefGoogle Scholar
  66. [66]
    EXO collaboration, R. Gornea, Search for double β decay with the EXO-200 TPC and prospects for barium ion tagging in liquid XENON, J. Phys. Conf. Ser. 309 (2011) 012003 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    Majorana collaboration, C. Aalseth et al., The Majorana experiment, Nucl. Phys. Proc. Suppl. 217 (2011) 44.ADSCrossRefGoogle Scholar
  68. [68]
    NEMO-3 collaboration, R.L. Flack, NEMO-3 and SuperNEMO: a search for zero neutrino double β decay, Nucl. Phys. Proc. Suppl. 217 (2011) 53.ADSCrossRefGoogle Scholar
  69. [69]
    GERDA collaboration, G. Meierhofer, GERDA: a new neutrinoless double β experiment using Ge-76, J. Phys. Conf. Ser. 312 (2011) 072011 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    CANDLES collaboration, I. Ogawa et al., Study of Ca-48 double β decay by candles, J. Phys. Conf. Ser. 312 (2011) 072014 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    S. Razzaque and A.Y. Smirnov, Searching for sterile neutrinos in ice, JHEP 07 (2011) 084 [arXiv:1104.1390] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    D. Hernandez and A.Y. Smirnov, Active to sterile neutrino oscillations: coherence and MINOS results, Phys. Lett. B 706 (2012) 360 [arXiv:1105.5946] [INSPIRE].ADSGoogle Scholar
  73. [73]
    R. Gandhi and P. Ghoshal, Atmospheric neutrinos as a probe of eV 2 -scale active-sterile oscillations, arXiv:1108.4360 [INSPIRE].
  74. [74]
    V. Barger, Y. Gao and D. Marfatia, Is there evidence for sterile neutrinos in IceCube data?, Phys. Rev. D 85 (2012) 011302 [arXiv:1109.5748] [INSPIRE].ADSGoogle Scholar
  75. [75]
    A. de Gouvêa and W.-C. Huang, Constraining the (low-energy) type-I seesaw, arXiv:1110.6122 [INSPIRE].
  76. [76]
    B. Bhattacharya, A.M. Thalapillil and C.E. Wagner, Implications of sterile neutrinos for medium/long-baseline neutrino experiments and the determination of θ 13, arXiv:1111.4225 [INSPIRE].
  77. [77]
    Z. Hou, R. Keisler, L. Knox, M. Millea and C. Reichardt, How additional massless neutrinos affect the cosmic microwave background damping tail, arXiv:1104.2333 [INSPIRE].
  78. [78]
    J. Dunkley, R. Hlozek, J. Sievers, V. Acquaviva, P. Ade, et al., The Atacama cosmology telescope: cosmological parameters from the 2008 power spectra, Astrophys. J. 739 (2011) 52 [arXiv:1009.0866] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Robust cosmological bounds on neutrinos and their combination with oscillation results, JHEP 08 (2010) 117 [arXiv:1006.3795] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    E. Giusarma, M. Archidiacono, R. de Putter, A. Melchiorri and O. Mena, Constraints on massive sterile plus active neutrino species in non minimal cosmologies, arXiv:1112.4661 [INSPIRE].
  81. [81]
    A.X. Gonzalez-Morales, R. Poltis, B.D. Sherwin and L. Verde, Are priors responsible for cosmology favoring additional neutrino species?, arXiv:1106.5052 [INSPIRE].
  82. [82]
    J. Hamann, Evidence for extra radiation? profile likelihood versus bayesian posterior, JCAP 03 (2012) 021 [arXiv:1110.4271] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    S. Bashinsky and U. Seljak, Neutrino perturbations in CMB anisotropy and matter clustering, Phys. Rev. D 69 (2004) 083002 [astro-ph/0310198] [INSPIRE].ADSGoogle Scholar
  84. [84]
    J. Hamann, S. Hannestad, G.G. Raffelt and Y.Y. Wong, Sterile neutrinos with eV masses in cosmology: how disfavoured exactly?, JCAP 09 (2011) 034 [arXiv:1108.4136] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    H.-S. Kang and G. Steigman, Cosmological constraints on neutrino degeneracy, Nucl. Phys. B 372 (1992) 494 [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    V. Barger, J.P. Kneller, P. Langacker, D. Marfatia and G. Steigman, Hiding relativistic degrees of freedom in the early universe, Phys. Lett. B 569 (2003) 123 [hep-ph/0306061] [INSPIRE].ADSGoogle Scholar
  87. [87]
    G. Mangano, G. Miele, S. Pastor, O. Pisanti and S. Sarikas, Constraining the cosmic radiation density due to lepton number with big bang nucleosynthesis, JCAP 03 (2011) 035 [arXiv:1011.0916] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    R. Foot and R. Volkas, Reconciling sterile neutrinos with big bang nucleosynthesis, Phys. Rev. Lett. 75 (1995) 4350 [hep-ph/9508275] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    R. Foot, M.J. Thomson and R. Volkas, Large neutrino asymmetries from neutrino oscillations, Phys. Rev. D 53 (1996) 5349 [hep-ph/9509327] [INSPIRE].ADSGoogle Scholar
  90. [90]
    K. Abazajian, N.F. Bell, G.M. Fuller and Y.Y. Wong, Cosmological lepton asymmetry, primordial nucleosynthesis and sterile neutrinos, Phys. Rev. D 72 (2005) 063004 [astro-ph/0410175] [INSPIRE].ADSGoogle Scholar
  91. [91]
    R. Fardon, A.E. Nelson and N. Weiner, Dark energy from mass varying neutrinos, JCAP 10 (2004) 005 [astro-ph/0309800] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    D.B. Kaplan, A.E. Nelson and N. Weiner, Neutrino oscillations as a probe of dark energy, Phys. Rev. Lett. 93 (2004) 091801 [hep-ph/0401099] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    X.-J. Bi, P.-h. Gu, X.-l. Wang and X.-m. Zhang, Thermal leptogenesis in a model with mass varying neutrinos, Phys. Rev. D 69 (2004) 113007 [hep-ph/0311022] [INSPIRE].ADSGoogle Scholar
  94. [94]
    R. Takahashi and M. Tanimoto, Model of mass varying neutrinos in SUSY, Phys. Lett. B 633 (2006) 675 [hep-ph/0507142] [INSPIRE].ADSGoogle Scholar
  95. [95]
    R. Takahashi and M. Tanimoto, Speed of sound in the mass varying neutrinos scenario, JHEP 05 (2006) 021 [astro-ph/0601119] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    Z. Chacko, L.J. Hall, S.J. Oliver and M. Perelstein, Late time neutrino masses, the LSND experiment and the cosmic microwave background, Phys. Rev. Lett. 94 (2005) 111801 [hep-ph/0405067] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    NOMAD collaboration, P. Astier et al., Search for ν(μ) → ν(e) oscillations in the NOMAD experiment, Phys. Lett. B 570 (2003) 19 [hep-ex/0306037] [INSPIRE].ADSGoogle Scholar
  98. [98]
    A. Kusenko, Sterile neutrinos: the dark side of the light fermions, Phys. Rept. 481 (2009) 1 [arXiv:0906.2968] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    A. Kusenko, S. Pascoli and D. Semikoz, New bounds on MeV sterile neutrinos based on the accelerator and Super-Kamiokande results, JHEP 11 (2005) 028 [hep-ph/0405198] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    E. Nardi, E. Roulet and D. Tommasini, Limits on neutrino mixing with new heavy particles, Phys. Lett. B 327 (1994) 319 [hep-ph/9402224] [INSPIRE].ADSGoogle Scholar
  101. [101]
    A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    L3 collaboration, O. Adriani et al., Search for isosinglet neutral heavy leptons in Z0 decays, Phys. Lett. B 295 (1992) 371 [INSPIRE].ADSGoogle Scholar
  103. [103]
    G. Gelmini, S. Palomares-Ruiz and S. Pascoli, Low reheating temperature and the visible sterile neutrino, Phys. Rev. Lett. 93 (2004) 081302 [astro-ph/0403323] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    S. Palomares-Ruiz, S. Pascoli and T. Schwetz, Explaining LSND by a decaying sterile neutrino, JHEP 09 (2005) 048 [hep-ph/0505216] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of PhysicsPrinceton UniversityPrincetonUSA
  2. 2.School of Natural SciencesInstitute for Advanced StudyPrincetonUSA

Personalised recommendations