Angular scaling in jets

Open Access


We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.


Jets Hadronic Colliders 


  1. [1]
    A. Abdesselam et al., Boosted objects: a probe of beyond the standard model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Altheimer et al., Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks, arXiv:1201.0008 [INSPIRE].
  3. [3]
    L.G. Almeida, R. Alon and M. Spannowsky, Structure of fat jets at the Tevatron and beyond, arXiv:1110.3684 [INSPIRE].
  4. [4]
    M. Jankowiak and A.J. Larkoski, Jet substructure without trees, JHEP 06 (2011) 057 [arXiv:1104.1646] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    G. Gustafson and A. Nilsson, Multifractal dimensions in QCD cascades, Z. Phys. C 52 (1991) 533 [INSPIRE].ADSGoogle Scholar
  6. [6]
    J. Bjorken, A plumbers view of perturbative QCD, Phys. Rev. D 45 (1992) 4077 [INSPIRE].ADSGoogle Scholar
  7. [7]
    B. Andersson, P. Dahlkvist and G. Gustafson, An infrared stable multiplicity measure on QCD parton states, Phys. Lett. B 214 (1988) 604 [INSPIRE].ADSGoogle Scholar
  8. [8]
    P. Grassberger and I. Procaccia, Characterization of strange attractors, Phys. Rev. Lett. 50 (1983) 346 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors, Physica D 9 (1983) 189.MathSciNetADSGoogle Scholar
  10. [10]
    F. Takens, Invariants related to dimension and entropy, in Atas do 13°, Colóqkio Brasiliero do Matematica, Rio de Janeiro, Brasil (1983).Google Scholar
  11. [11]
    J. Theiler, Estimating fractal dimension, J. Opt. Soc. Am. A 7 (1990) 1055.MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    S.D. Ellis, Z. Kunszt and D.E. Soper, Jets at hadron colliders at order \( \alpha_s^3 \) : a look inside, Phys. Rev. Lett. 69 (1992) 3615 [hep-ph/9208249] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Seymour, Jet shapes in hadron collisions: higher orders, resummation and hadronization, Nucl. Phys. B 513 (1998) 269 [hep-ph/9707338] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    W. Giele, D. Kosower and P. Skands, Higher-order corrections to timelike jets, Phys. Rev. D 84 (2011) 054003 [arXiv:1102.2126] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J.R. Walsh and S. Zuberi, Factorization constraints on jet substructure, arXiv:1110.5333 [INSPIRE].
  16. [16]
    G.P. Salam, Towards jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Cacciari, G.P. Salam and S. Sapeta, On the characterisation of the underlying event, JHEP 04 (2010) 065 [arXiv:0912.4926] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    CDF collaboration, T. Affolder et al., Charged jet evolution and the underlying event in \( p\overline p \) collisions at 1.8 TeV, Phys. Rev. D 65 (2002) 092002 [INSPIRE].ADSGoogle Scholar
  19. [19]
    R. Field, Min-bias and the underlying event at the LHC, Acta Phys. Polon. B 42 (2011) 2631 [arXiv:1110.5530] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    T. Sjöstrand and M. van Zijl, A multiple interaction model for the event structure in hadron collisions, Phys. Rev. D 36 (1987) 2019 [INSPIRE].ADSGoogle Scholar
  21. [21]
    R.P. Feynman, Very high-energy collisions of hadrons, Phys. Rev. Lett. 23 (1969) 1415.ADSCrossRefGoogle Scholar
  22. [22]
    K.G. Wilson, Some experiments on multiple production, Cornell University preprint, U.S.A. (Nov. 1970).Google Scholar
  23. [23]
    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Bahr, S. Gieseke and M.H. Seymour, Simulation of multiple partonic interactions in HERWIG++, JHEP 07 (2008) 076 [arXiv:0803.3633] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Bahr, J.M. Butterworth, S. Gieseke and M.H. Seymour, Soft interactions in HERWIG++, arXiv:0905.4671 [INSPIRE].
  26. [26]
    S. Gieseke et al., HERWIG++ 2.5 release note, arXiv:1102.1672 [INSPIRE].
  27. [27]
    Herwig++ project page, UE tunes/.
  28. [28]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  30. [30]
    R. Corke and T. Sjöstrand, Interleaved parton showers and tuning prospects, JHEP 03 (2011) 032 [arXiv:1011.1759] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, arXiv:1111.6097 [INSPIRE].
  32. [32]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  1. 1.SLACMenlo ParkUSA
  2. 2.SITP, Stanford UniversityStanfordUSA

Personalised recommendations