Advertisement

Vacuum stability, neutrinos, and dark matter

  • Chian-Shu Chen
  • Yong Tang
Article

Abstract

Motivated by the discovery hint of the Standard Model (SM) Higgs mass around 125 GeV at the LHC, we study the vacuum stability and perturbativity bounds on Higgs scalar of the SM extensions including neutrinos and dark matter (DM). Guided by the SM gauge symmetry and the minimal changes in the SM Higgs potential we consider two extensions of neutrino sector (Type-I and Type-III seesaw mechanisms) and DM sector (a real scalar singlet (darkon) and minimal dark matter (MDM)) respectively. The darkon contributes positively to the β function of the Higgs quartic coupling λ and can stabilize the SM vacuum up to high scale. Similar to the top quark in the SM we find the cause of instability is sensitive to the size of new Yukawa couplings between heavy neutrinos and Higgs boson, namely, the scale of seesaw mechanism. MDM and Type-III seesaw fermion triplet, two nontrivial representations of SU(2) L group, will bring the additional positive contributions to the gauge coupling g 2 renormalization group (RG) evolution and would also help to stabilize the electroweak vacuum up to high scale.

Keywords

Higgs Physics Beyond Standard Model Renormalization Group Neutrino Physics 

References

  1. [1]
    ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt {s} = {7} \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt {s} = {7} \) TeV, arXiv:1202.1488 [INSPIRE].
  3. [3]
    S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, D.Z. Freedman and P.van Nieuwenhuizen eds., North Holland, Amsterdam, The Netherlands (1979).Google Scholar
  5. [5]
    E. Witten, Neutrino masses in the minimal O(10) theory, Phys. Lett. B 91 (1980) 81 [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    B. Kayser, F. Gibrat-Debu and F. Perrier, The physics of the massive neutrinos, World Scientific, Singapore (1989).Google Scholar
  7. [7]
    R. Mohapatra et al., Theory of neutrinos: a white paper, Rept. Prog. Phys. 70 (2007) 1757 [hep-ph/0510213] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Foot, H. Lew, X. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].Google Scholar
  9. [9]
    W. Konetschny and W. Kummer, Nonconservation of Total Lepton Number with Scalar Bosons, Phys. Lett. B 70 (1977) 433 [INSPIRE].ADSGoogle Scholar
  10. [10]
    T. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].ADSGoogle Scholar
  11. [11]
    J. Schechter and J. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  12. [12]
    G. Gelmini and M. Roncadelli, Left-handed neutrino mass scale and spontaneously broken lepton number, Phys. Lett. B 99 (1981) 411 [INSPIRE].ADSGoogle Scholar
  13. [13]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  14. [14]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  15. [15]
    V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].ADSGoogle Scholar
  17. [17]
    C. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    X.-G. He, T. Li, X.-Q. Li, J. Tandean and H.-C. Tsai, Constraints on scalar dark matter from direct experimental searches, Phys. Rev. D 79 (2009) 023521 [arXiv:0811.0658] [INSPIRE].ADSGoogle Scholar
  19. [19]
    Y. Cai, X.-G. He and B. Ren, Low mass dark matter and invisible Higgs width in darkon models, Phys. Rev. D 83 (2011) 083524 [arXiv:1102.1522] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].ADSGoogle Scholar
  21. [21]
    XENON100 collaboration, E. Aprile et al., Implications on inelastic dark matter from 100 live days of XENON100 data, Phys. Rev. D 84 (2011) 061101 [arXiv:1104.3121] [INSPIRE].ADSGoogle Scholar
  22. [22]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Cirelli and A. Strumia, Minimal dark matter: model and results, New J. Phys. 11 (2009) 105005 [arXiv:0903.3381] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Bounds on the fermions and Higgs boson masses in grand unified theories, Nucl. Phys. B 158 (1979) 295 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Lindner, Implications of triviality for the standard model, Z. Phys. C 31 (1986) 295 [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. Sher, Electroweak Higgs potentials and vacuum stability, Phys. Rept. 179 (1989) 273 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Lindner, M. Sher and H.W. Zaglauer, Probing vacuum stability bounds at the Fermilab collider, Phys. Lett. B 228 (1989) 139 [INSPIRE].ADSGoogle Scholar
  28. [28]
    P.B. Arnold and S. Vokos, Instability of hot electroweak theory: bounds on m(H) and M (t), Phys. Rev. D 44 (1991) 3620 [INSPIRE].ADSGoogle Scholar
  29. [29]
    G. Altarelli and G. Isidori, Lower limit on the Higgs mass in the standard model: an update, Phys. Lett. B 337 (1994) 141 [INSPIRE].ADSGoogle Scholar
  30. [30]
    J. Casas, J. Espinosa and M. Quirós, Standard model stability bounds for new physics within LHC reach, Phys. Lett. B 382 (1996) 374 [hep-ph/9603227] [INSPIRE].ADSGoogle Scholar
  31. [31]
    B. Schrempp and M. Wimmer, Top quark and Higgs boson masses: Interplay between infrared and ultraviolet physics, Prog. Part. Nucl. Phys. 37 (1996) 1 [hep-ph/9606386] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Espinosa, G. Giudice and A. Riotto, Cosmological implications of the Higgs mass measurement, JCAP 05 (2008) 002 [arXiv:0710.2484] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    T. Clark, B. Liu, S. Love and T. ter Veldhuis, The standard model Higgs Boson-Inflaton and dark matter, Phys. Rev. D 80 (2009) 075019 [arXiv:0906.5595] [INSPIRE].ADSGoogle Scholar
  35. [35]
    R.N. Lerner and J. McDonald, Gauge singlet scalar as inflaton and thermal relic dark matter, Phys. Rev. D 80 (2009) 123507 [arXiv:0909.0520] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Gonderinger, Y. Li, H. Patel and M.J. Ramsey-Musolf, Vacuum stability, perturbativity and scalar singlet dark matter, JHEP 01 (2010) 053 [arXiv:0910.3167] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].ADSGoogle Scholar
  38. [38]
    M. Holthausen, K.S. Lim and M. Lindner, Planck scale boundary conditions and the Higgs mass, JHEP 02 (2012) 037 [arXiv:1112.2415] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Z.Z. Xing, H. Zhang and S. Zhou, Impacts of the Higgs mass on vacuum stability, running fermion masses and two-body Higgs decays, arXiv:1112.3112 [INSPIRE].
  40. [40]
    M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, arXiv:1112.3647 [INSPIRE].
  41. [41]
    J. Casas, V. Di Clemente, A. Ibarra and M. Quirós, Massive neutrinos and the Higgs mass window, Phys. Rev. D 62 (2000) 053005 [hep-ph/9904295] [INSPIRE].ADSGoogle Scholar
  42. [42]
    I. Gogoladze, N. Okada and Q. Shafi, Higgs boson mass bounds in a Type-II seesaw model with triplet scalars, Phys. Rev. D 78 (2008) 085005 [arXiv:0802.3257] [INSPIRE].ADSGoogle Scholar
  43. [43]
    I. Gogoladze, N. Okada and Q. Shafi, Higgs boson mass bounds in the standard model with Type III and Type I seesaw, Phys. Lett. B 668 (2008) 121 [arXiv:0805.2129] [INSPIRE].ADSGoogle Scholar
  44. [44]
    T. Hambye and K. Riesselmann, Matching conditions and Higgs mass upper bounds revisited, Phys. Rev. D 55 (1997) 7255 [hep-ph/9610272] [INSPIRE].ADSGoogle Scholar
  45. [45]
    T. Cheng, E. Eichten and L.-F. Li, Higgs phenomena in asymptotically free gauge theories, Phys. Rev. D 9 (1974) 2259 [INSPIRE].ADSGoogle Scholar
  46. [46]
    M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 1. Wave function renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 2. Yukawa couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 3. Scalar quartic couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    H. Arason et al., Renormalization group study of the standard model and its extensions. 1. The standard model, Phys. Rev. D 46 (1992) 3945 [INSPIRE].ADSGoogle Scholar
  50. [50]
    J. Chakrabortty, A. Dighe, S. Goswami and S. Ray, Renormalization group evolution of neutrino masses and mixing in the Type-III seesaw mechanism, Nucl. Phys. B 820 (2009) 116 [arXiv:0812.2776] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Physics Division, National Center for Theoretical SciencesHsinchuTaiwan

Personalised recommendations