Inflation, moduli (de)stabilization and supersymmetry breaking



We study the cosmological inflation from the viewpoint of the moduli stabilization. We study the scenario that the superpotential has a large value during the inflation era enough to stabilize moduli, but it is small in the true vacuum. This scenario is discussed by using a simple model, one type of hybrid models.


Compactification and String Models Supersymmetry Breaking Cosmology of Theories beyond the SM 


  1. [1]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    N.V. Krasnikov, On Supersymmetry Breaking in Superstring Theories, Phys. Lett. B 193 (1987) 37 [SPIRES].ADSGoogle Scholar
  3. [3]
    T.R. Taylor, Dilaton, gaugino condensation and supersymmetry breaking, Phys. Lett. B 252 (1990) 59 [SPIRES].ADSGoogle Scholar
  4. [4]
    J.A. Casas, Z. Lalak, C. Muñoz and G.G. Ross, Hierarchical supersymmetry breaking and dynamical determination of compactification parameters by nonperturbative effects, Nucl. Phys. B 347 (1990) 243 [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    B. de Carlos, J.A. Casas and C. Muñoz, Supersymmetry breaking and determination of the unification gauge coupling constant in string theories, Nucl. Phys. B 399 (1993) 623 [hep-th/9204012] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    R. Kallosh and A.D. Linde, Landscape, the scale of SUSY breaking and inflation, JHEP 12 (2004) 004 [hep-th/0411011] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    H. Abe, T. Higaki and T. Kobayashi, KKLT type models with moduli-mixing superpotential, Phys. Rev. D 73 (2006) 046005 [hep-th/0511160] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    H. Abe, T. Higaki, T. Kobayashi and O. Seto, Non-perturbative moduli superpotential with positive exponents, Phys. Rev. D 78 (2008) 025007 [arXiv:0804.3229] [SPIRES].ADSGoogle Scholar
  9. [9]
    M. Badziak and M. Olechowski, Volume modulus inflection point inflation and the gravitino mass problem, JCAP 02 (2009) 010 [arXiv:0810.4251] [SPIRES].ADSGoogle Scholar
  10. [10]
    M. Badziak and M. Olechowski, Volume modulus inflation and a low scale of SUSY breaking, JCAP 07 (2008) 021 [arXiv:0802.1014] [SPIRES].ADSGoogle Scholar
  11. [11]
    T. He, S. Kachru and A. Westphal, Gravity waves and the LHC: Towards high-scale inflation with low-energy SUSY, JHEP 06 (2010) 065 [arXiv:1003.4265] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    A. Saltman and E. Silverstein, The scaling of the no-scale potential and de Sitter model building, JHEP 11 (2004) 066 [hep-th/0402135] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    M. Gomez-Reino and C.A. Scrucca, Locally stable non-supersymmetric Minkowski vacua in supergravity, JHEP 05 (2006) 015 [hep-th/0602246] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    O. Lebedev, H.P. Nilles and M. Ratz, de Sitter vacua from matter superpotentials, Phys. Lett. B 636 (2006) 126 [hep-th/0603047] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    E. Dudas, C. Papineau and S. Pokorski, Moduli stabilization and uplifting with dynamically generated F-terms, JHEP 02 (2007) 028 [hep-th/0610297] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    H. Abe, T. Higaki, T. Kobayashi and Y. Omura, Moduli stabilization, F-term uplifting and soft supersymmetry breaking terms, Phys. Rev. D 75 (2007) 025019 [hep-th/0611024] [SPIRES].ADSGoogle Scholar
  17. [17]
    H. Abe, T. Higaki and T. Kobayashi, More about F-term uplifting, Phys. Rev. D 76 (2007) 105003 [arXiv:0707.2671] [SPIRES].ADSGoogle Scholar
  18. [18]
    R. Kallosh and A.D. Linde, O’KKLT, JHEP 02 (2007) 002 [hep-th/0611183] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    O. Lebedev, V. Lowen, Y. Mambrini, H.P. Nilles and M. Ratz, Metastable vacua in flux compactifications and their phenomenology, JHEP 02 (2007) 063 [hep-ph/0612035] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    M. Serone and A. Westphal, Moduli Stabilization in Meta-Stable Heterotic Supergravity Vacua, JHEP 08 (2007) 080 [arXiv:0707.0497] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    A. Achucarro and K. Sousa, F-term uplifting and moduli stabilization consistent with Kähler invariance, JHEP 03 (2008) 002 [arXiv:0712.3460] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    H. Abe, T. Higaki, T. Kobayashi and Y. Omura, Dynamically sequestered F-term uplifting in extra dimension, JHEP 04 (2008) 072 [arXiv:0801.0998] [SPIRES].MathSciNetCrossRefGoogle Scholar
  23. [23]
    L. Covi et al., de Sitter vacua in no-scale supergravities and Calabi-Yau string models, JHEP 06 (2008) 057 [arXiv:0804.1073] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    L. Covi et al., Constraints on modular inflation in supergravity and string theory, JHEP 08 (2008) 055 [arXiv:0805.3290] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    G.R. Dvali, Q. Shafi and R.K. Schaefer, Large scale structure and supersymmetric inflation without fine tuning, Phys. Rev. Lett. 73 (1994) 1886 [hep-ph/9406319] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    E.J. Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart and D. Wands, False vacuum inflation with Einstein gravity, Phys. Rev. D 49 (1994) 6410 [astro-ph/9401011] [SPIRES].ADSGoogle Scholar
  27. [27]
    S. Dimopoulos, G.R. Dvali and R. Rattazzi, Dynamical inflation and unification scale on quantum moduli spaces, Phys. Lett. B 410 (1997) 119 [hep-ph/9705348] [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    Y. Nakai and M. Sakai, Inflation and Gauge Mediation in Supersymmetric Gauge Theory, Prog. Theor. Phys. 125 (2011) 395 [arXiv:1004.2099] [SPIRES].ADSMATHCrossRefGoogle Scholar
  29. [29]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    R. Kitano, H. Ooguri and Y. Ookouchi, Direct mediation of meta-stable supersymmetry breaking, Phys. Rev. D 75 (2007) 045022 [hep-ph/0612139] [SPIRES].ADSGoogle Scholar
  31. [31]
    N.J. Craig, ISS-flation, JHEP 02 (2008) 059 [arXiv:0801.2157] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    C.A. Savoy and A. Sil, Can Inflation Induce Supersymmetry Breaking in a Metastable Vacuum?, Phys. Lett. B 660 (2008) 236 [arXiv:0709.1923] [SPIRES].ADSGoogle Scholar
  33. [33]
    P. Brax, C.A. Savoy and A. Sil, SQCD Inflation & SUSY Breaking, JHEP 04 (2009) 092 [arXiv:0902.0972] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    P. Brax, C. van de Bruck, A.-C. Davis and S.C. Davis, Coupling hybrid inflation to moduli, JCAP 09 (2006) 012 [hep-th/0606140] [SPIRES].ADSGoogle Scholar
  35. [35]
    S.C. Davis and M. Postma, Successfully combining SUGRA hybrid inflation and moduli stabilisation, JCAP 04 (2008) 022 [arXiv:0801.2116] [SPIRES].ADSGoogle Scholar
  36. [36]
    M. Badziak and M. Olechowski, Inflation with racetrack superpotential and matter field, JCAP 02 (2010) 026 [arXiv:0911.1213] [SPIRES].ADSGoogle Scholar
  37. [37]
    S. Mooij and M. Postma, Hybrid inflation with moduli stabilization and low scale supersymmetry breaking, JCAP 06 (2010) 012 [arXiv:1001.0664] [SPIRES].ADSGoogle Scholar
  38. [38]
    F. Marchesano and G. Shiu, MSSM vacua from flux compactifications, Phys. Rev. D 71 (2005) 011701 [hep-th/0408059] [SPIRES].ADSGoogle Scholar
  39. [39]
    F. Marchesano and G. Shiu, Building MSSM flux vacua, JHEP 11 (2004) 041 [hep-th/0409132] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    K. Nakayama, F. Takahashi and T.T. Yanagida, Constraint on the gravitino mass in hybrid inflation, JCAP 12 (2010) 010 [arXiv:1007.5152] [SPIRES].ADSGoogle Scholar
  41. [41]
    R. Kallosh and A.D. Linde, P-term, D-term and F-term inflation, JCAP 10 (2003) 008 [hep-th/0306058] [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    S. Kachru et al., Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055] [SPIRES].MathSciNetADSGoogle Scholar
  43. [43]
    D. Baumann, A. Dymarsky, I.R. Klebanov, L. McAllister and P.J. Steinhardt, A Delicate Universe, Phys. Rev. Lett. 99 (2007) 141601 [arXiv:0705.3837] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    D. Baumann, A. Dymarsky, I.R. Klebanov and L. McAllister, Towards an Explicit Model of D-brane Inflation, JCAP 01 (2008) 024 [arXiv:0706.0360] [SPIRES].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of PhysicsKyoto UniversityKyotoJapan
  2. 2.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan

Personalised recommendations