Large-N limits of 2d CFTs, quivers and AdS3 duals

Open Access


We explore the large-N limits of 2d CFTs, focusing mostly on WZW models and their cosets. The SU(N) k theory is parametrized in this limit by a ’t Hooft-like coupling. We show a duality between strong coupling, where the theory is described by almost free fermions, and weak coupling where the theory is described by bosonic fields by an analysis of spectra and correlators. The AdS3 dual is described, and several quantitative checks are performed. Besides the more standard states that should correspond to bulk black holes we find ground states with large degeneracy that can dominate the standard Cardy entropy at weak coupling and are expected to correspond to regular horizonless semiclassical bulk solutions.


Gauge-gravity correspondence AdS-CFT Correspondence Chern-Simons Theories Conformal and W Symmetry 


  1. [1]
    A. Pakman, L. Rastelli and S.S. Razamat, Diagrams for symmetric product orbifolds, JHEP 10 (2009) 034 [arXiv:0905.3448] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  3. [3]
    S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989) 108 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    C.-S. Chu and D.J. Smith, Multiple self-dual strings on M5-branes, JHEP 01 (2010) 001 [arXiv:0909.2333] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    S.G. Naculich and H.J. Schnitzer, Superconformal coset equivalence from level-rank duality, Nucl. Phys. B 505 (1997) 727 [hep-th/9705149] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    V. Niarchos, Seiberg duality in Chern-Simons theories with fundamental and adjoint matter, JHEP 11 (2008) 001 [arXiv:0808.2771] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    V. Niarchos, R-charges, chiral rings and RG flows in supersymmetric Chern-Simons-Matter theories, JHEP 05 (2009) 054 [arXiv:0903.0435] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    D. Kutasov, A comment on duality in N = 1 supersymmetric non abelian gauge theories, Phys. Lett. B 351 (1995) 230 [hep-th/9503086] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    E. Witten, Nonabelian bosonization in two dimensions, Commun. Math. Phys. 92 (1984) 455 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  12. [12]
    V.G. Knizhnik and A.B. Zamolodchikov, Current algebra and Wess-Zumino model in two dimensions, Nucl. Phys. B 247 (1984) 83 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    M.B. Halpern, The two faces of a dual pion-quark model, Phys. Rev. D 4 (1971) 2398 [SPIRES].ADSGoogle Scholar
  14. [14]
    P. Goddard, A. Kent and D.I. Olive, Virasoro algebras and coset space models, Phys. Lett. B 152 (1985) 88. MathSciNetADSGoogle Scholar
  15. [15]
    E.B. Kiritsis, Nonstandard bosonization techniques in conformal field theory, Mod. Phys. Lett. A 4 (1989) 437 [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    M.B. Halpern and E. Kiritsis, General Virasoro construction on affine G, Mod. Phys. Lett. A 4 (1989) 1373 [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    M.B. Halpern, E. Kiritsis, N.A. Obers and K. Clubok, Irrational conformal field theory, Phys. Rept. 265 (1996) 1 [hep-th/9501144] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  18. [18]
    P. Kraus, Lectures on black holes and the AdS 3 /CFT 2 correspondence, Lect. Notes Phys. 755 (2008) 193 [hep-th/0609074] [SPIRES].MathSciNetADSGoogle Scholar
  19. [19]
    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    R. Casero, E. Kiritsis and A. Paredes, Chiral symmetry breaking as open string tachyon condensation, Nucl. Phys. B 787 (2007) 98 [hep-th/0702155] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    I. Iatrakis, E. Kiritsis and A. Paredes, An AdS/QCD model from Sen’s tachyon action, Phys. Rev. D 81 (2010) 115004 [arXiv:1003.2377] [SPIRES].ADSGoogle Scholar
  22. [22]
    I. Iatrakis, E. Kiritsis and A. Paredes, An AdS/QCD model from tachyon condensation: II, JHEP 11 (2010) 123 [arXiv:1010.1364] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [SPIRES].ADSGoogle Scholar
  24. [24]
    R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A black hole Farey tail, hep-th/0005003 [SPIRES].
  25. [25]
    A. Giveon, M.B. Halpern, E.B. Kiritsis and N.A. Obers, Exact C function and C theorem on affine Virasoro space, Nucl. Phys. B 357 (1991) 655 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    M.R. Douglas, Spaces of quantum field theories, arXiv:1005.2779 [SPIRES].
  27. [27]
    H. Dorn and H.J. Otto, Two and three point functions in Liouville theory, Nucl. Phys. B 429 (1994) 375 [hep-th/9403141] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    C.R. Nappi and E. Witten, A WZW model based on a nonsemisimple group, Phys. Rev. Lett. 71 (1993) 3751 [hep-th/9310112] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  30. [30]
    G. D’Appollonio and E. Kiritsis, String interactions in gravitational wave backgrounds, Nucl. Phys. B 674 (2003) 80 [hep-th/0305081] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    M. Bianchi, G. D’Appollonio, E. Kiritsis and O. Zapata, String amplitudes in the Hpp-wave limit of AdS 3 × S 3, JHEP 04 (2004) 074 [hep-th/0402004] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    G. D’Appollonio and E. Kiritsis, D-branes and BCFT in Hpp-wave backgrounds, Nucl. Phys. B 712 (2005) 433 [hep-th/0410269] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    E. Kiritsis, Product CFTs, gravitational cloning, massive gravitons and the space of gravitational duals, JHEP 11 (2006) 049 [hep-th/0608088] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    D. Gepner and E. Witten, String theory on group manifolds, Nucl. Phys. B 278 (1986) 493 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    A.M. Polyakov and P.B. Wiegmann, Theory of nonabelian Goldstone bosons in two dimensions, Phys. Lett. B 131 (1983) 121 [SPIRES].MathSciNetADSGoogle Scholar
  36. [36]
    A.M. Polyakov and P.B. Wiegmann, Goldstone fields in two-dimensions with multivalued actions, Phys. Lett. B 141 (1984) 223 [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, arXiv:1007.3837 [SPIRES].
  38. [38]
    I. Bakas and E. Kiritsis, Bosonic realization of a universal W algebra and Z (∞) parafermions, Nucl. Phys. B 343 (1990) 185 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    I. Bakas and E. Kiritsis, Grassmannian coset models and unitary representations of W (∞), Mod. Phys. Lett. A 5 (1990) 2039 [SPIRES].MathSciNetADSGoogle Scholar
  40. [40]
    I. Bakas and E.B. Kiritsis, Structure and representations of the W (∞) algebra, Prog. Theor. Phys. Suppl. 102 (1990) 15 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    I. Bakas and E.B. Kiritsis, Universal W algebras in quantum field theory, Int. J. Mod. Phys. A 6 (1991) 2871 [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    I. Bakas and E. Kiritsis, Beyond the large-N limit: nonlinear W (∞) as symmetry of the SL(2,R)/U(1) coset model, Int. J. Mod. Phys. A 7S1A (1992) 55 [Int. J. Mod. Phys. A 7 (1992) 55] [hep-th/9109029] [SPIRES].MathSciNetGoogle Scholar
  43. [43]
    I. Bakas and E. Kiritsis, Target space description of W (∞) symmetry in coset models, Phys. Lett. B 301 (1993) 49 [hep-th/9211083] [SPIRES].MathSciNetADSGoogle Scholar
  44. [44]
    D.I. Olive, E. Rabinovici and A. Schwimmer, A class of string backgrounds as a semiclassical limit of WZW models, Phys. Lett. B 321 (1994) 361 [hep-th/9311081] [SPIRES].MathSciNetADSGoogle Scholar
  45. [45]
    A. Sen, Dirac-Born-Infeld action on the tachyon kink and vortex, Phys. Rev. D 68 (2003) 066008 [hep-th/0303057] [SPIRES].ADSGoogle Scholar
  46. [46]
    M.R. Garousi, D-brane anti-D-brane effective action and brane interaction in open string channel, JHEP 01 (2005) 029 [hep-th/0411222] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  48. [48]
    S. Okubo and J. Patera, Symmetrization of product representations and general indices and simple Lie algebras, J. Math. Phys. 24 (1983) 2722 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  49. [49]
    E. Witten, Chiral symmetry, the 1/n expansion and the SU(N) thirring model, Nucl. Phys. B 145 (1978) 110 [SPIRES].ADSCrossRefGoogle Scholar
  50. [50]
    D. Gepner, Nonabelian bosonization and multiflavor QED and QCD in two-dimensions, Nucl. Phys. B 252 (1985) 481 [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    I. Affleck, On the realization of chiral symmetry in (1 + 1)-dimensions, Nucl. Phys. B 265 (1986) 448 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    G. Date, Y. Frishman and J. Sonnenschein, The spectrum of multiflavor QCD in two-dimensions, Nucl. Phys. B 283 (1987) 365 [SPIRES].ADSCrossRefGoogle Scholar
  53. [53]
    Y. Frishman and J. Sonnenschein, Bosonization of colored flavored fermions and QCD in two-dimensions, Nucl. Phys. B 294 (1987) 801 [SPIRES].ADSCrossRefGoogle Scholar
  54. [54]
    Y. Frishman and J. Sonnenschein, Bosonization and QCD in two-dimensions, Phys. Rept. 223 (1993) 309 [hep-th/9207017] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    E. Abdalla and M.C.B. Abdalla, Updating QCD in two-dimensions, Phys. Rept. 265 (1996) 253 [hep-th/9503002] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    A. Armoni, Y. Frishman and J. Sonnenschein, Massless QCD 2 from current constituents, Nucl. Phys. B 596 (2001) 459 [hep-th/0011043] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Crete Center for Theoretical Physics, Department of PhysicsUniversity of CreteHeraklionGreece
  2. 2.Laboratoire APC, Université Paris-Diderot Paris 7, CNRS UMR 7164Paris Cedex 13France

Personalised recommendations