Gravitational collapse of k-essence

  • Ratindranath Akhoury
  • David Garfinkle
  • Ryo Saotome


We perform numerical simulations of the gravitational collapse of a k-essence scalar field. When the field is sufficiently strongly gravitating, a black hole forms. However, the black hole has two horizons: a light horizon (the ordinary black hole horizon) and a sound horizon that traps k-essence. In certain cases the k-essence signals can travel faster than light and the sound horizon is inside the light horizon. Under those circumstances, k-essence signals can escape from the black hole. Eventually, the two horizons merge and the k-essence signals can no longer escape.


Cosmology of Theories beyond the SM Black Holes Classical Theories of Gravity Spacetime Singularities 


  1. [1]
    C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, A dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration, Phys. Rev. Lett. 85 (2000) 4438 [astro-ph/0004134] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, Essentials of k-essence, Phys. Rev. D 63 (2001) 103510 [astro-ph/0006373] [SPIRES].ADSGoogle Scholar
  3. [3]
    C. Bonvin, C. Caprini and R. Durrer, A no-go theorem for k-essence dark energy, Phys. Rev. Lett. 97 (2006) 081303 [astro-ph/0606584] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    J.U. Kang, V. Vanchurin and S. Winitzki, Attractor scenarios and superluminal signals in k-essence cosmology, Phys. Rev. D 76 (2007) 083511 [arXiv:0706.3994] [SPIRES].ADSGoogle Scholar
  5. [5]
    E. Babichev, V. Mukhanov and A. Vikman, k-essence, superluminal propagation, causality and emergent geometry, JHEP 02 (2008) 101 [arXiv:0708.0561] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    V.F. Mukhanov and A. Vikman, Enhancing the tensor-to-scalar ratio in simple inflation, JCAP 02 (2006) 004 [astro-ph/0512066] [SPIRES].ADSGoogle Scholar
  7. [7]
    E. Babichev, V.F. Mukhanov and A. Vikman, Escaping from the black hole?, JHEP 09 (2006) 061 [hep-th/0604075] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    C. Eling and T. Jacobson, Black holes in Einstein-Aether theory, Class. Quant. Grav. 23 (2006) 5643 [gr-qc/0604088] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  9. [9]
    D. Garfinkle, C. Eling and T. Jacobson, Numerical simulations of gravitational collapse in Einstein-aether theory, Phys. Rev. D 76 (2007) 024003 [gr-qc/0703093] [SPIRES].ADSGoogle Scholar
  10. [10]
    V. Moncrief, Stability of stationary, spherical accretion onto a Schwarzschild black hole, Astrophys J. 235 (1980) 1038. ADSCrossRefGoogle Scholar
  11. [11]
    M.W. Choptuik, Universality and scaling in gravitational collapse of a massless scalar field, Phys. Rev. Lett. 70 (1993) 9 [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    J. Ziprick and G. Kunstatter, Numerical study of black-hole formation in Painleve-Gullstrand coordinates, Phys. Rev. D 79 (2009) 101503 [arXiv:0812.0993] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    R. Akhoury, D. Garfinkle, R. Saotome and A. Vikman, Non-stationary dark energy around a black hole, arXiv:1103.2454 [SPIRES].
  14. [14]
    G. Kunstatter, C. Leonard, R. Mann and J. Ziprick, in preparation.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Ratindranath Akhoury
    • 1
  • David Garfinkle
    • 1
    • 2
  • Ryo Saotome
    • 1
  1. 1.Michigan Center for Theoretical Physics, Randall Laboratory of PhysicsUniversity of MichiganAnn ArborU.S.A.
  2. 2.Department of PhysicsOakland UniversityRochesterU.S.A.

Personalised recommendations