Advertisement

Shear channel correlators from hot charged black holes

  • Daniel K. Brattan
  • Simon A. Gentle
Article

Abstract

We compute numerically the full retarded Green’s functions for conserved currents in the shear channel of a (2 + 1)-dimensional field theory at non-zero temperature and density. This theory is assumed to be holographically dual to a non-extremal, electric Reissner-Nordstrøm AdS4 black hole with planar horizon. Using the holographic description we obtain results for arbitrary frequencies and momenta and survey the detailed structure of these correlators. In particular, we demonstrate the ‘repulsion’ and ‘clover-leaf crossing’ of their poles and stress the importance of the residues at the poles beyond the hydrodynamic regime. As a consistency check, we show that our results agree precisely with existing literature for the appropriate quasinormal frequencies of the bulk theory.

Keywords

AdS-CFT Correspondence Black Holes Holography and condensed matter physics (AdS/CMT) 

References

  1. [1]
    D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].ADSGoogle Scholar
  4. [4]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].
  7. [7]
    M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS2, arXiv:0907.2694 [SPIRES].
  9. [9]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    G.T. Horowitz, Introduction to holographic superconductors, arXiv:1002.1722 [SPIRES].
  11. [11]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [SPIRES].Google Scholar
  12. [12]
    D. Birmingham, I. Sachs and S.N. Solodukhin, Conformal field theory interpretation of black hole quasi-normal modes, Phys. Rev. Lett. 88 (2002) 151301 [hep-th/0112055] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D 62 (2000) 024027 [hep-th/9909056] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    M. Edalati, J.I. Jottar and R.G. Leigh, Shear modes, criticality and extremal black holes, JHEP 04 (2010) 075 [arXiv:1001.0779] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear uid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. II: Sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [SPIRES].ADSGoogle Scholar
  20. [20]
    V.E. Hubeny and M. Rangamani, A holographic view on physics out of equilibrium, Adv. High Energy Phys. 2010 (2010) 297916 [arXiv:1006.3675] [SPIRES].Google Scholar
  21. [21]
    X.-H. Ge, K. Jo and S.-J. Sin, Hydrodynamics of RN AdS 4 black hole and holographic optics, JHEP 03 (2011) 104 [arXiv:1012.2515] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    H. Kodama and A. Ishibashi, Master equations for perturbations of generalized static black holes with charge in higher dimensions, Prog. Theor. Phys. 111 (2004) 29 [hep-th/0308128] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  23. [23]
    D.T. Son and A.O. Starinets, Hydrodynamics of R-charged black holes, JHEP 03 (2006) 052 [hep-th/0601157] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    O. Saremi, The viscosity bound conjecture and hydrodynamics of M2-brane theory at finite chemical potential, JHEP 10 (2006) 083 [hep-th/0601159] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    K. Maeda, M. Natsuume and T. Okamura, Viscosity of gauge theory plasma with a chemical potential from AdS/CFT, Phys. Rev. D 73 (2006) 066013 [hep-th/0602010] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    E.W. Leaver, Quasinormal modes of Reissner-Nordstrom black holes, Phys. Rev. D 41 (1990) 2986 [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    F. Denef, S.A. Hartnoll and S. Sachdev, Quantum oscillations and black hole ringing, Phys. Rev. D 80 (2009) 126016 [arXiv:0908.1788] [SPIRES].ADSGoogle Scholar
  28. [28]
    M. Edalati, J.I. Jottar and R.G. Leigh, Holography and the sound of criticality, JHEP 10 (2010) 058 [arXiv:1005.4075] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum criticality and holographic superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    M. Kaminski et al., Quasinormal modes of massive charged flavor branes, JHEP 03 (2010) 117 [arXiv:0911.3544] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev. Lett. 93 (2004) 090602 [hep-th/0311175] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Centre for Particle Theory & Department of Mathematical SciencesScience LaboratoriesDurhamU.K.

Personalised recommendations