Large dimensions and small curvatures from supersymmetric brane back-reaction

  • C. P. Burgess
  • L. van Nierop


We compute the back-reaction of pairs of codimension-two branes within an explicit flux-stabilized compactification, to trace how its properties depend on the parameters that define the brane-bulk couplings. Both brane tension and magnetic couplings to the stabilizing flux play an important role in the resulting dynamics, with the magnetic coupling allowing some of the flux to be localized on the branes (thus changing the flux-quantization conditions). We find that back-reaction lifts the classical flat directions of the bulk supergravity, and we calculate both the scalar potential and changes to the extra-dimensional and on-brane geometries that result, as functions of the assumed brane couplings. When linearized about simple rugby-ball geometries the resulting solutions allow a systematic exploration of the system’s response. Several of the systems we explore have remarkable properties. Among these are a propensity for the extra dimensions to stabilize at exponentially large sizes, providing a mechanism for generating extremely large volumes. In some circumstances the brane-dilaton coupling allows the bulk dilaton to adjust to suppress the on-brane curvature parametrically below the change in brane tension, potentially providing a mechanism for reducing the vacuum energy. We explore the stability of this suppression to quantum effects in the case where their strength is controlled by the value of the field along the classical flat direction, and find it can (but need not) be stable.


Field Theories in Higher Dimensions Supersymmetric Effective Theories Brane Dynamics in Gauge Theories 


  1. [1]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  2. [2]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  3. [3]
    K. Lanczos, Flächenhafte Verteilung der Materie in der Einsteinschen Gravitationstheorie (in German), Phys. Z. 23 (1922) 239 [Annalen Phys. 379 (1924) 518].Google Scholar
  4. [4]
    C.W. Misner and D.H. Sharp, Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Phys. Rev. 136 (1964) B571 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuov. Cim. 44B (1966) 1 [Erratum ibid. B 48 (1967) 463] [SPIRES].ADSGoogle Scholar
  6. [6]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B 475 (1996) 94 [hep-th/9603142] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    P. Hořava and E. Witten, Heterotic and type-I string dynamics from eleven dimensions, Nucl. Phys. B 460 (1996) 506 [hep-th/9510209] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    E. Witten, Strong coupling expansion of Calabi-Yau compactification, Nucl. Phys. B 471 (1996) 135 [hep-th/9602070] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    J.D. Lykken, Weak scale superstrings, Phys. Rev. D 54 (1996) 3693 [hep-th/9603133] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    K. Benakli, Phenomenology of low quantum gravity scale models, Phys. Rev. D 60 (1999) 104002 [hep-ph/9809582] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    C.P. Burgess, L.E. Ibáñez and F. Quevedo, Strings at the intermediate scale or is the Fermi scale dual to the Planck scale?, Phys. Lett. B 447 (1999) 257 [hep-ph/9810535] [SPIRES].ADSGoogle Scholar
  14. [14]
    I. Antoniadis and K. Benakli, Large dimensions and string physics in future colliders, Int. J. Mod. Phys. A 15 (2000) 4237 [hep-ph/0007226] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    Y. Aghababaie, C.P. Burgess, S.L. Parameswaran and F. Quevedo, Towards a naturally small cosmological constant from branes in 6D supergravity, Nucl. Phys. B 680 (2004) 389 [hep-th/0304256] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [SPIRES].ADSGoogle Scholar
  17. [17]
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [SPIRES].ADSGoogle Scholar
  18. [18]
    D. Atwood et al., Supersymmetric large extra dimensions are small and/or numerous, Phys. Rev. D 63 (2001) 025007 [hep-ph/0007178] [SPIRES].ADSGoogle Scholar
  19. [19]
    J.L. Hewett and D. Sadri, Supersymmetric extra dimensions: gravitino effects in selectron pair production, Phys. Rev. D 69 (2004) 015001 [hep-ph/0204063] [SPIRES].ADSGoogle Scholar
  20. [20]
    C.P. Burgess, Supersymmetric large extra dimensions and the cosmological constant: an update, Ann. Phys. 313 (2004) 283 [hep-th/0402200] [SPIRES].MathSciNetGoogle Scholar
  21. [21]
    C.P. Burgess, Towards a natural theory of dark energy: supersymmetric large extra dimensions, AIP Conf. Proc. 743 (2005) 417 [hep-th/0411140] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    C.P. Burgess, J. Matias and F. Quevedo, MSLED: a Minimal Supersymmetric Large Extra Dimensions scenario, Nucl. Phys. B 706 (2005) 71 [hep-ph/0404135] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    J. Matias and C.P. Burgess, MSLED, neutrino oscillations and the cosmological constant, JHEP 09 (2005) 052 [hep-ph/0508156] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    P. Callin and C.P. Burgess, Deviations from Newton’s law in supersymmetric large extra dimensions, Nucl. Phys. B 752 (2006) 60 [hep-ph/0511216] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    C.P. Burgess, A. Maharana and F. Quevedo, Uber-naturalness: unexpectedly light scalars from supersymmetric extra dimensions, arXiv:1005.1199 [SPIRES].
  26. [26]
    J.-W. Chen, M.A. Luty and E. Ponton, A critical cosmological constant from millimeter extra dimensions, JHEP 09 (2000) 012 [hep-th/0003067] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    C.P. Burgess, R.C. Myers and F. Quevedo, A naturally small cosmological constant on the brane?, Phys. Lett. B 495 (2000) 384 [hep-th/9911164] [SPIRES].ADSGoogle Scholar
  28. [28]
    N. Arkani-Hamed, S. Dimopoulos, N. Kaloper and R. Sundrum, A small cosmological constant from a large extra dimension, Phys. Lett. B 480 (2000) 193 [hep-th/0001197] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    S. Kachru, M.B. Schulz and E. Silverstein, Self-tuning flat domain walls in 5D gravity and string theory, Phys. Rev. D 62 (2000) 045021 [hep-th/0001206] [SPIRES].MathSciNetADSGoogle Scholar
  30. [30]
    S. Dimopoulos, S. Kachru, N. Kaloper, A.E. Lawrence and E. Silverstein, Small numbers from tunneling between brane throats, Phys. Rev. D 64 (2001) 121702 [hep-th/0104239] [SPIRES].MathSciNetADSGoogle Scholar
  31. [31]
    S.M. Carroll and M.M. Guica, Sidestepping the cosmological constant with football-shaped extra dimensions, hep-th/0302067 [SPIRES].
  32. [32]
    I. Navarro, Codimension two compactifications and the cosmological constant problem, JCAP 09 (2003) 004 [hep-th/0302129] [SPIRES].ADSGoogle Scholar
  33. [33]
    C.P. Burgess, P. Grenier and D. Hoover, Quintessentially flat scalar potentials, JCAP 03 (2004) 008 [hep-ph/0308252] [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    H. Nishino and E. Sezgin, Matter and gauge couplings of N = 2 supergravity in six dimensions, Phys. Lett. B 144 (1984) 187 [SPIRES].MathSciNetADSGoogle Scholar
  35. [35]
    H. Nishino and E. Sezgin, The complete N = 2, D = 6 supergravity with matter and Yang-Mills couplings, Nucl. Phys. B 278 (1986) 353 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    S. Randjbar-Daemi, A. Salam, E. Sezgin and J.A. Strathdee, An anomaly free model in six-dimensions, Phys. Lett. B 151 (1985) 351 [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    A. Salam and E. Sezgin, Chiral compactification on Minkowski x S 2 of N = 2 Einstein-Maxwell supergravity in six-dimensions, Phys. Lett. B 147 (1984) 47 [SPIRES].MathSciNetADSGoogle Scholar
  38. [38]
    Y. Aghababaie, C.P. Burgess, S.L. Parameswaran and F. Quevedo, SUSY breaking and moduli stabilization from fluxes in gauged 6D supergravity, JHEP 03 (2003) 032 [hep-th/0212091] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    C.P. Burgess, S.L. Parameswaran and I. Zavala, The fate of unstable gauge flux compactifications, JHEP 05 (2009) 008 [arXiv:0812.3902] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    G.W. Gibbons, R. Güven and C.N. Pope, 3-branes and uniqueness of the Salam-Sezgin vacuum, Phys. Lett. B 595 (2004) 498 [hep-th/0307238] [SPIRES].ADSGoogle Scholar
  41. [41]
    Y. Aghababaie et al., Warped brane worlds in six dimensional supergravity, JHEP 09 (2003) 037 [hep-th/0308064] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    C.P. Burgess, F. Quevedo, G. Tasinato and I. Zavala, General axisymmetric solutions and self-tuning in 6D chiral gauged supergravity, JHEP 11 (2004) 069 [hep-th/0408109] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    A.J. Tolley, C.P. Burgess, D. Hoover and Y. Aghababaie, Bulk singularities and the effective cosmological constant for higher co-dimension branes, JHEP 03 (2006) 091 [hep-th/0512218] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    A.J. Tolley, C.P. Burgess, C. de Rham and D. Hoover, Scaling solutions to 6D gauged chiral supergravity, New J. Phys. 8 (2006) 324 [hep-th/0608083] [SPIRES].ADSCrossRefGoogle Scholar
  45. [45]
    A.J. Tolley, C.P. Burgess, C. de Rham and D. Hoover, Exact wave solutions to 6D gauged chiral supergravity, JHEP 07 (2008) 075 [arXiv:0710.3769] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    M. Minamitsuji, Instability of brane cosmological solutions with flux compactifications, Class. Quant. Grav. 25 (2008) 075019 [arXiv:0801.3080] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    H.M. Lee and A. Papazoglou, Codimension-2 brane inflation, Phys. Rev. D 80 (2009) 043506 [arXiv:0901.4962] [SPIRES].MathSciNetADSGoogle Scholar
  48. [48]
    S.L. Parameswaran, G. Tasinato and I. Zavala, The 6D SuperSwirl, Nucl. Phys. B 737 (2006) 49 [hep-th/0509061] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    H.M. Lee and C. Lüdeling, The general warped solution with conical branes in six-dimensional supergravity, JHEP 01 (2006) 062 [hep-th/0510026] [SPIRES].ADSCrossRefGoogle Scholar
  50. [50]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [SPIRES].MathSciNetADSGoogle Scholar
  51. [51]
    K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    C.P. Burgess and L. van Nierop, Bulk axions, brane back-reaction and fluxes, JHEP 02 (2011) 094 [arXiv:1012.2638] [SPIRES].ADSCrossRefGoogle Scholar
  53. [53]
    H.M. Lee and A. Papazoglou, Scalar mode analysis of the warped Salam-Sezgin model, Nucl. Phys. B 747 (2006) 294 [Erratum ibid. B 765 (2007) 200] [hep-th/0602208] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    C.P. Burgess, C. de Rham, D. Hoover, D. Mason and A.J. Tolley, Kicking the rugby ball: perturbations of 6D gauged chiral supergravity, JCAP 02 (2007) 009 [hep-th/0610078] [SPIRES].ADSGoogle Scholar
  55. [55]
    S.L. Parameswaran, S. Randjbar-Daemi and A. Salvio, Gauge fields, fermions and mass gaps in 6D brane worlds, Nucl. Phys. B 767 (2007) 54 [hep-th/0608074] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    S.L. Parameswaran, S. Randjbar-Daemi and A. Salvio, Stability and negative tensions in 6D brane worlds, JHEP 01 (2008) 051 [arXiv:0706.1893] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    S.L. Parameswaran, S. Randjbar-Daemi and A. Salvio, General perturbations for braneworld compactifications and the six dimensional case, JHEP 03 (2009) 136 [arXiv:0902.0375] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    J. Khoury and A. Weltman, Chameleon cosmology, Phys. Rev. D 69 (2004) 044026 [astro-ph/0309411] [SPIRES].MathSciNetADSGoogle Scholar
  59. [59]
    S. Weinberg, Gravitation and cosmology, Wiley, U.S.A. (1973).Google Scholar
  60. [60]
    C.W. Misner, J.A. Wheeler and K.S. Thorne, Gravitation, W.H. Freeman & Company, U.S.A. (1973) [SPIRES].Google Scholar
  61. [61]
    A. Vilenkin, Gravitational field of vacuum domain walls and strings, Phys. Rev. D 23 (1981) 852 [SPIRES].ADSGoogle Scholar
  62. [62]
    R. Gregory, Gravitational stability of local strings, Phys. Rev. Lett. 59 (1987) 740 [SPIRES].ADSCrossRefGoogle Scholar
  63. [63]
    A.G. Cohen and D.B. Kaplan, The exact metric about global cosmic strings, Phys. Lett. B 215 (1988) 67 [SPIRES].ADSGoogle Scholar
  64. [64]
    A. Vilenkin and P. Shellard, Cosmic strings and other topological defects, Cambridge University Press, Cambridge U.K. (1994) [SPIRES].MATHGoogle Scholar
  65. [65]
    R. Gregory and C. Santos, Cosmic strings in dilaton gravity, Phys. Rev. D 56 (1997) 1194 [gr-qc/9701014] [SPIRES].ADSGoogle Scholar
  66. [66]
    W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [SPIRES].ADSCrossRefGoogle Scholar
  67. [67]
    W.D. Goldberger and M.B. Wise, Renormalization group flows for brane couplings, Phys. Rev. D 65 (2002) 025011 [hep-th/0104170] [SPIRES].ADSGoogle Scholar
  68. [68]
    E. Dudas, C. Papineau and V.A. Rubakov, Flowing to four dimensions, JHEP 03 (2006) 085 [hep-th/0512276] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    C. de Rham, The effective field theory of codimension-two branes, JHEP 01 (2008) 060 [arXiv:0707.0884] [SPIRES].CrossRefGoogle Scholar
  70. [70]
    C.P. Burgess, D. Hoover and G. Tasinato, UV caps and modulus stabilization for 6D gauged chiral supergravity, JHEP 09 (2007) 124 [arXiv:0705.3212] [SPIRES].ADSCrossRefGoogle Scholar
  71. [71]
    C.P. Burgess, D. Hoover, C. de Rham and G. Tasinato, Effective field theories and matching for codimension-2 branes, JHEP 03 (2009) 124 [arXiv:0812.3820] [SPIRES].ADSCrossRefGoogle Scholar
  72. [72]
    P. Bostock, R. Gregory, I. Navarro and J. Santiago, Einstein gravity on the codimension 2 brane?, Phys. Rev. Lett. 92 (2004) 221601 [hep-th/0311074] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  73. [73]
    I. Navarro and J. Santiago, Gravity on codimension 2 brane worlds, JHEP 02 (2005) 007 [hep-th/0411250] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  74. [74]
    J. Vinet and J.M. Cline, Codimension-two branes in six-dimensional supergravity and the cosmological constant problem, Phys. Rev. D 71 (2005) 064011 [hep-th/0501098] [SPIRES].MathSciNetADSGoogle Scholar
  75. [75]
    M. Peloso, L. Sorbo and G. Tasinato, Standard 4D gravity on a brane in six dimensional flux compactifications, Phys. Rev. D 73 (2006) 104025 [hep-th/0603026] [SPIRES].MathSciNetADSGoogle Scholar
  76. [76]
    B. Himmetoglu and M. Peloso, Isolated Minkowski vacua and stability analysis for an extended brane in the rugby ball, Nucl. Phys. B 773 (2007) 84 [hep-th/0612140] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  77. [77]
    B. Himmetoglu and M. Peloso, Isolated Minkowski vacua and stability analysis for an extended brane in the rugby ball, Nucl. Phys. B 773 (2007) 84 [hep-th/0612140] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  78. [78]
    C. de Rham, The effective field theory of codimension-two branes, JHEP 01 (2008) 060 [arXiv:0707.0884] [SPIRES].CrossRefGoogle Scholar
  79. [79]
    E. Papantonopoulos, A. Papazoglou and V. Zamarias, Regularization of conical singularities in warped six-dimensional compactifications, JHEP 03 (2007) 002 [hep-th/0611311] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  80. [80]
    E. Papantonopoulos, A. Papazoglou and V. Zamarias, Induced cosmology on a regularized brane in six-dimensional flux compactification, Nucl. Phys. B 797 (2008) 520 [arXiv:0707.1396] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  81. [81]
    D. Yamauchi and M. Sasaki, Brane world in arbitrary dimensions without Z 2 symmetry, Prog. Theor. Phys. 118 (2007) 245 [arXiv:0705.2443] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  82. [82]
    N. Kaloper and D. Kiley, Charting the landscape of modified gravity, JHEP 05 (2007) 045 [hep-th/0703190] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  83. [83]
    M. Minamitsuji and D. Langlois, Cosmological evolution of regularized branes in 6D warped flux compactifications, Phys. Rev. D 76 (2007) 084031 [arXiv:0707.1426] [SPIRES].MathSciNetADSGoogle Scholar
  84. [84]
    S.A. Appleby and R.A. Battye, Regularized braneworlds of arbitrary codimension, Phys. Rev. D 76 (2007) 124009 [arXiv:0707.4238] [SPIRES].MathSciNetADSGoogle Scholar
  85. [85]
    C. Bogdanos, A. Kehagias and K. Tamvakis, Pseudo-3-branes in a curved 6D bulk, Phys. Lett. B 656 (2007) 112 [arXiv:0709.0873] [SPIRES].MathSciNetADSGoogle Scholar
  86. [86]
    O. Corradini, K. Koyama and G. Tasinato, Induced gravity on intersecting brane-worlds part I: maximally symmetric solutions, Phys. Rev. D 77 (2008) 084006 [arXiv:0712.0385] [SPIRES].MathSciNetADSGoogle Scholar
  87. [87]
    O. Corradini, K. Koyama and G. Tasinato, Induced gravity on intersecting brane-worlds part II: cosmology, Phys. Rev. D 78 (2008) 124002 [arXiv:0803.1850] [SPIRES].MathSciNetADSGoogle Scholar
  88. [88]
    F. Arroja, T. Kobayashi, K. Koyama and T. Shiromizu, Low energy effective theory on a regularized brane in 6D gauged chiral supergravity, JCAP 12 (2007) 006 [arXiv:0710.2539] [SPIRES].MathSciNetADSGoogle Scholar
  89. [89]
    V. Dzhunushaliev, V. Folomeev and M. Minamitsuji, Thick brane solutions, Rept. Prog. Phys. 73 (2010) 066901 [arXiv:0904.1775] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  90. [90]
    A. Bayntun, C.P. Burgess and L. van Nierop, Codimension-2 brane-bulk matching: examples from six and ten dimensions, New J. Phys. 12 (2010) 075015 [arXiv:0912.3039] [SPIRES].ADSCrossRefGoogle Scholar
  91. [91]
    G.W. Gibbons and C.N. Pope, Consistent S 2 Pauli reduction of six-dimensional chiral gauged Einstein-Maxwell supergravity, Nucl. Phys. B 697 (2004) 225 [hep-th/0307052] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  92. [92]
    C.P. Burgess, Introduction to effective field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 329 [hep-th/0701053] [SPIRES].ADSCrossRefGoogle Scholar
  93. [93]
    C.P. Burgess, Quantum gravity in everyday life: general relativity as an effective field theory, Living Rev. Rel. 7 (2004) 5 [gr-qc/0311082] [SPIRES].Google Scholar
  94. [94]
    C.P. Burgess and D. London, Uses and abuses of effective Lagrangians, Phys. Rev. D 48 (1993) 4337 [hep-ph/9203216] [SPIRES].ADSGoogle Scholar
  95. [95]
    J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  96. [96]
    B.S. De Witt, Dynamical theory of groups and fields, in Relativity, groups and topology, B.S. De Witt and C. De Witt eds., Gordon and Breach, New York U.S.A. (1965) [SPIRES].Google Scholar
  97. [97]
    P.B. Gilkey, The spectral geometry of a Riemannian manifold, J. Diff. Geom. 10 (1975) 601 [SPIRES].MathSciNetMATHGoogle Scholar
  98. [98]
    D.M. McAvity and H. Osborn, A Dewitt expansion of the heat kernel for manifolds with a boundary, Class. Quant. Grav. 8 (1991) 603 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  99. [99]
    D. Hoover and C.P. Burgess, Ultraviolet sensitivity in higher dimensions, JHEP 01 (2006) 058 [hep-th/0507293] [SPIRES].ADSCrossRefGoogle Scholar
  100. [100]
    C.P. Burgess and D. Hoover, UV sensitivity in supersymmetric large extra dimensions: the Ricci-flat case, Nucl. Phys. B 772 (2007) 175 [hep-th/0504004] [SPIRES].ADSCrossRefGoogle Scholar
  101. [101]
    A.O. Barvinsky and G.A. Vilkovisky, The generalized Schwinger-Dewitt technique in gauge theories and quantum gravity, Phys. Rept. 119 (1985) 1 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  102. [102]
    D.V. Vassilevich, Heat kernel expansion: user’s manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  103. [103]
    E. Witten, New ‘gauge’ theories in six dimensions, JHEP 01 (1998) 001 [Adv. Theor. Math. Phys. 2 (1998) 61] [hep-th/9710065] [SPIRES].ADSCrossRefGoogle Scholar
  104. [104]
    A. Hanany and A. Zaffaroni, Branes and six dimensional supersymmetric theories, Nucl. Phys. B 529 (1998) 180 [hep-th/9712145] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  105. [105]
    M. Alishahiha and Y. Oz, Supergravity and ‘new’ six-dimensional gauge theories, Phys. Lett. B 495 (2000) 418 [hep-th/0008172] [SPIRES].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of Physics & AstronomyMcMaster UniversityHamiltonCanada
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations