Extremal and nonextremal Kerr/CFT correspondences



I rederive the Kerr/CFT correspondence without first taking the near-horizon extremal Kerr limit. This method extends easily to nonextremal black holes, for which the temperature and central charge behave poorly at the horizon but the entropy remains finite. A computation yields one-half of the standard Bekenstein-Hawking entropy, with hints that the other half may be related to a conformal field theory at the inner horizon. I then present an alternative approach, based on a stretched Killing horizon, in which the full entropy is obtained and the temperature and central charge remain well-behaved even in the nonextremal case.


Black Holes Models of Quantum Gravity 


  1. [1]
    A. Strominger, Black hole entropy from near-horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    S. Carlip, Black hole entropy from conformal field theory in any dimension, Phys. Rev. Lett. 82 (1999) 2828 [hep-th/9812013] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  3. [3]
    S. Carlip, Entropy from conformal field theory at Killing horizons, Class. Quant. Grav. 16 (1999) 3327 [gr-qc/9906126] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  4. [4]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    S. Carlip, Symmetries, Horizons and Black Hole Entropy, Gen. Rel. Grav. 39 (2007) 1519 [arXiv:0705.3024] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  6. [6]
    M. Guica and A. Strominger, Microscopic Realization of the Kerr/CFT Correspondence, JHEP 02 (2011) 010 [arXiv:1009.5039] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    A. Castro and F. Larsen, Near Extremal Kerr Entropy from AdS 2 Quantum Gravity, JHEP 12 (2009) 037 [arXiv:0908.1121] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    J. Rasmussen, A near-NHEK/CFT correspondence, Int. J. Mod. Phys. A 25 (2010) 5517 [arXiv:1004.4773] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: A vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    J. Koga, Asymptotic symmetries on Killing horizons, Phys. Rev. D 64 (2001) 124012 [gr-qc/0107096] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    S. Silva, Black hole entropy and thermodynamics from symmetries, Class. Quant. Grav. 19 (2002) 3947 [hep-th/0204179] [SPIRES].ADSMATHCrossRefGoogle Scholar
  12. [12]
    G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B 633 (2002) 3 [hep-th/0111246] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    G. Compere, Symmetries and conservation laws in Lagrangian gauge theories with applications to the mechanics of black holes and to gravity in three dimensions, arXiv:0708.3153 [SPIRES].
  14. [14]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  15. [15]
    V.P. Frolov and I.D. Novikov, Black Hole Physics, Kluwer (1998).Google Scholar
  16. [16]
    C. Teitelboim, How commutators of constraints reflect the space-time structure, Ann. Phys. 79 (1973) 542 [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    J.L. Cardy, Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl. Phys. B 270 (1986) 186 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    H.W.J. Bloete, J.L. Cardy and M.P. Nightingale, Conformal Invariance, the Central Charge and Universal Finite Size Amplitudes at Criticality, Phys. Rev. Lett. 56 (1986) 742 [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    R. Bousso, A. Maloney and A. Strominger, Conformal vacua and entropy in de Sitter space, Phys. Rev. D 65 (2002) 104039 [hep-th/0112218] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal Field Theory, Springer (1997).Google Scholar
  21. [21]
    A.J.M. Medved, D. Martin and M. Visser, Dirty black holes: Symmetries at stationary non-static horizons, Phys. Rev. D 70 (2004) 024009 [gr-qc/0403026] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    A. Ori, Oscillatory null singularity inside realistic spinning black holes, Phys. Rev. Lett. 83 (1999) 5423 [gr-qc/0103012] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  23. [23]
    A. Castro, A. Maloney and A. Strominger, Hidden Conformal Symmetry of the Kerr Black Hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    M.-I. Park, Hamiltonian dynamics of bounded spacetime and black hole entropy: Canonical method, Nucl. Phys. B 634 (2002) 339 [hep-th/0111224] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    G. Date, Isolated Horizon, Killing Horizon and Event Horizon, Class. Quant. Grav. 18 (2001) 5219 [gr-qc/0107039] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  26. [26]
    K.S. Thorne, D.A. MacDonald and R.H. Price, Black Holes: The Membrane Paradigm, Yale University Press, Yale U.S.A. (1986).Google Scholar
  27. [27]
    O. Dreyer, A. Ghosh and J. Wisniewski, Black hole entropy calculations based on symmetries, Class. Quant. Grav. 18 (2001) 1929 [hep-th/0101117] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  28. [28]
    S. Carlip, Black hole entropy and the problem of universality, J. Phys. Conf. Ser. 67 (2007) 012022 [gr-qc/0702094] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    J.N. Goldberg, Dirac brackets for general relativity on a null cone, Found. Phys. 15 (1985) 439.MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    C.G. Torre, Null Surface Geometrodynamics, Class. Quant. Grav. 3 (1986) 773 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  31. [31]
    R.M. Wald, General Relativity, University of Chicago Press, Chicago U.S.A. (1984).MATHGoogle Scholar
  32. [32]
    T. Regge and C. Teitelboim, Role of Surface Integrals in the Hamiltonian Formulation of General Relativity, Ann. Phys. 88 (1974) 286 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  33. [33]
    J.D. Brown, S.R. Lau and J.W. York, Jr., Action and Energy of the Gravitational Field, gr-qc/0010024 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CaliforniaDavisU.S.A.

Personalised recommendations