# A generalisation of the Nielsen-Olesen vortex: non-cylindrical strings in a modified abelian-higgs model

- 62 Downloads
- 6 Citations

## Abstract

We modify the standard Abelian-Higgs model by introducing spatially-dependent couplings for the scalar and vector fields. We investigate static, non-cylindrically symmetric solutions of the resulting field equations and propose a pinch solution which interpolates between degenerate vacua along the string, labelled by ±|*n*|. This configuration corresponds to a vortex which shrinks to the Planck scale before re-emerging as an anti-vortex, resulting in the formation of a bead pair with one bead either side of the intersection. The solution is then topologically stable. A key assumption is that quantities such as phase and winding number, along with those which depend on them like the magnetic flux, become undefined at the Planck scale so that regions of opposite winding may be joined via a Planck-sized segment of neutral string. Similarities between this solution and the extra-dimensional windings of strings in type IIB string theory are discussed and a correspondence between field theory and string theory parameters is suggested. The spatial-dependence of the field couplings is found to have a natural interpretation in the string picture and results from the variation of the winding radius, giving rise to a varying (effective) string coupling. An interesting result is an estimate of the Higgs mass (at critical coupling) in terms of the parameters which define the Klebanov-Strassler geometry and which, in principle, may be constrained by cosmological observations.

## Keywords

String theory and cosmic strings Topological Strings String Duality Brane Dynamics in Gauge Theories## References

- [1]A. Avgoustidis and E.P.S. Shellard,
*Cosmic string evolution in higher dimensions*,*Phys. Rev.***D 71**(2005) 123513 [hep-ph/0410349] [SPIRES].ADSGoogle Scholar - [2]A. Avgoustidis and E.P.S. Shellard,
*Cycloops: Dark matter or a monopole problem for brane inflation?*,*JHEP***08**(2005) 092 [hep-ph/0504049] [SPIRES].MathSciNetADSCrossRefGoogle Scholar - [3]A. Avgoustidis,
*Cosmic String Dynamics and Evolution in Warped Spacetime*,*Phys. Rev.***D 78**(2008) 023501 [arXiv:0712.3224] [SPIRES].ADSGoogle Scholar - [4]J.J. Blanco-Pillado and A. Iglesias,
*Strings at the bottom of the deformed conifold*,*JHEP***08**(2005) 040 [hep-th/0504068] [SPIRES].MathSciNetADSCrossRefGoogle Scholar - [5]M. Lake, S. Thomas and J. Ward,
*String Necklaces and Primordial Black Holes from Type IIB Strings*,*JHEP***12**(2009) 033 [arXiv:0906.3695] [SPIRES].MathSciNetADSCrossRefGoogle Scholar - [6]M. Lake, S. Thomas and J. Ward,
*Non-topological Cycloops*,*JCAP***01**(2010) 026 [arXiv:0911.3118] [SPIRES].ADSGoogle Scholar - [7]T. Matsuda,
*Brane necklaces and brane coils*,*JHEP***05**(2005) 015 [hep-ph/0412290] [SPIRES].MathSciNetADSCrossRefGoogle Scholar - [8]
- [9]T. Matsuda,
*Primordial black holes from cosmic necklaces*,*JHEP***04**(2006) 017 [hep-ph/0509062] [SPIRES].MathSciNetADSCrossRefGoogle Scholar - [10]T. Matsuda,
*Dark matter production from cosmic necklaces*,*JCAP***04**(2006) 005 [hep-ph/0509064] [SPIRES].ADSGoogle Scholar - [11]A. Vilenkin and E.P.S. Shellard,
*Cosmic strings and other topological defects*, in Cambridge Monographs in Mathematical Physics, Cambridge University Press (2000).Google Scholar - [12]I.R. Klebanov and M.J. Strassler,
*Supergravity and a confining gauge theory: Duality cascades and χSB-resolution of naked singularities*,*JHEP***08**(2000) 052 [hep-th/0007191] [SPIRES].MathSciNetADSCrossRefGoogle Scholar - [13]B.J. Carr, K. Kohri, Y. Sendouda and J. Yokoyama,
*New cosmological constraints on primordial black holes*,*Phys. Rev.***D 81**(2010) 104019 [arXiv:0912.5297] [SPIRES].ADSGoogle Scholar - [14]V. Berezinsky and A. Vilenkin,
*Cosmic necklaces and ultrahigh energy cosmic rays*,*Phys. Rev. Lett.***79**(1997) 5202 [astro-ph/9704257] [SPIRES].ADSCrossRefGoogle Scholar - [15]L. Perivolaropoulos,
*Asymptotics of Nielsen-Olesen Vortices Phys. Rev.***D 48**(1993) 5961 [hep-ph/9310264v1] [SPIRES].ADSGoogle Scholar - [16]H.B. Nielsen and P. Olesen,
*Vortex-line models for dual strings*,*Nucl. Phys.***B 61**(1973) 45 [SPIRES].ADSCrossRefGoogle Scholar - [17]M.B. Hindmarsh and T.W.B. Kibble,
*Cosmic strings*,*Rept. Prog. Phys.***58**(1995) 477 [hep-ph/9411342] [SPIRES].MathSciNetADSCrossRefGoogle Scholar - [18]E.B. Bogomol’nyi and A.I. Vainstein
*Stability of strings in gauge abelian theory Sov. J. Nucl. Phys.***23**(1976) 588.Google Scholar - [19]J. Preskill,
*Vortices and Monopoles*, Lectures presneted at the 1985 Les Houches Summer School US D.O.E. Research and Development Report, CALT-66-1287 (1986).Google Scholar - [20]E.B. Bogomolny,
*Stability of Classical Solutions*,*Sov. J. Nucl. Phys.***24**(1976) 449 [SPIRES].Google Scholar - [21]H.J. de Vega and F.A. Schaposnik,
*A Classical Vortex Solution of the Abelian Higgs Model*,*Phys. Rev.***D 14**(1976) 1100 [SPIRES].ADSGoogle Scholar - [22]J.R. Hook and H.E. Hall,
*Solid State Physics*(2nd Ed.), John Wiley and Sons (2001) [ISBN: 0-471-92805-4].Google Scholar - [23]J.F. Annett,
*Superconductivity, Superfluids and Condensates*, OUP, [ISBN-13: 978–0198507567] (2004).Google Scholar - [24]H. Firouzjahi, L. Leblond and S.H. Henry Tye,
*The (p,q) string tension in a warped deformed conifold*,*JHEP***05**(2006) 047 [hep-th/0603161] [SPIRES].ADSCrossRefGoogle Scholar - [25]J.H. Schwarz,
*An SL(2,Z) multiplet of type IIB superstrings*,*Phys. Lett.***B 360**(1995) 13 [*Erratum ibid.***B 364**(1995) 252] [hep-th/9508143] [SPIRES].ADSGoogle Scholar - [26]S. Thomas and J. Ward,
*Non-Abelian (p,q) strings in the warped deformed conifold*,*JHEP***12**(2006) 057 [hep-th/0605099] [SPIRES].MathSciNetADSCrossRefGoogle Scholar - [27]H. Firouzjahi,
*Dielectric (p,q) strings in a throat*,*JHEP***12**(2006) 031 [hep-th/0610130] [SPIRES].MathSciNetADSCrossRefGoogle Scholar - [28]E.J. Copeland and P.M. Saffin,
*On the evolution of cosmic-superstring networks*,*JHEP***11**(2005) 023 [hep-th/0505110] [SPIRES].MathSciNetADSCrossRefGoogle Scholar - [29]
- [30]N. Bevis, M. Hindmarsh, M. Kunz and J. Urrestilla,
*CMB power spectrum contribution from cosmic strings using field-evolution simulations of the Abelian Higgs model*,*Phys. Rev.***D 75**(2007) 065015 [astro-ph/0605018] [SPIRES].ADSGoogle Scholar - [31]L. Leblond and M. Wyman,
*Cosmic Necklaces from String Theory*,*Phys. Rev.***D 75**(2007) 123522 [astro-ph/0701427] [SPIRES].MathSciNetADSGoogle Scholar - [32]J.J. Blanco-Pillado and K.D. Olum,
*Monopole annihilation in cosmic necklaces*,*JCAP***05**(2010) 014 [arXiv:0707.3460] [SPIRES].ADSGoogle Scholar - [33]H. Firouzjahi, J. Karouby, S. Khosravi and R. Brandenberger,
*Zipping and Unzipping of Cosmic String Loops in Collision*,*Phys. Rev.***D 80**(2009) 083508 [arXiv:0907.4986] [SPIRES].ADSGoogle Scholar - [34]H. Firouzjahi, S. Khoeini-Moghaddam and S. Khosravi,
*Cosmic Strings Collision in Cosmological Backgrounds*,*Phys. Rev.***D 81**(2010) 123506 [arXiv:1004.0068] [SPIRES].ADSGoogle Scholar - [35]W.H. Zurek,
*Cosmological Experiments in Superfluid Helium?*,*Nature***317**(1985) 505 [SPIRES].ADSCrossRefGoogle Scholar - [36]W.H. Zurek,
*Cosmological Experiments in Condensed Matter Systems*,*Phys. Rept.***276**(1996) 177 [cond-mat/9607135] [SPIRES].ADSCrossRefGoogle Scholar - [37]W.H. Zurek,
*Cosmological experiments in superfluids and superconductors*, Prepared for*NATO Advanced Study Institute on Formation and Interactions of Topological Defects*, Cambridge, England, 21 Aug–3 Sep 1994 [SPIRES]. - [38]M.J. Bowick, L. Chandar, E.A. Schiff and A.M. Srivastava,
*The Cosmological Kibble mechanism in the laboratory: String formation in liquid crystals*,*Science***263**(1994) 943 [hep-ph/9208233] [SPIRES].ADSCrossRefGoogle Scholar - [39]G.A. Williams,
*Vortex loop phase transitions in liquid helium, cosmic strings and high-T(c) superconductors*,*Phys. Rev. Lett.***82**(1999) 1201 [cond-mat/9807338] [SPIRES].ADSCrossRefGoogle Scholar - [40]P.C. Hendry, N.S. Lawson, R.A.M. Lee, P.V.E. McClintock and C.D.H. Williams,
*Creation of quantized vortices at the lambda transition in liquid helium-4*,*J. Low Temp. Phys.***93**(1995) 1059 [cond-mat/9502119].ADSCrossRefGoogle Scholar - [41]I. Chuang, B. Yurke, R. Durrer and N. Turok,
*Cosmology in the laboratory: Defect dynamics in liquid crystals*,*Science***251**(1991) 1336 [SPIRES].ADSCrossRefGoogle Scholar - [42]C.J.A.P. Martins,
*Evolution of Cosmic Necklaces and Lattices*,*Phys. Rev.***D 82**(2010) 067301 [arXiv:1009.1707] [SPIRES].ADSGoogle Scholar - [43]C.J.A.P. Martins and A. Achucarro,
*Evolution of local and global monopole networks*, arXiv:0806.2671 [SPIRES]. - [44]M. Lake,
*Cosmic Necklaces in String Theory and Field Theory*PhD Thesis, Queen Mary, University of London, U.K. (2010).Google Scholar