A generalisation of the Nielsen-Olesen vortex: non-cylindrical strings in a modified abelian-higgs model

  • Matthew Lake
  • John Ward


We modify the standard Abelian-Higgs model by introducing spatially-dependent couplings for the scalar and vector fields. We investigate static, non-cylindrically symmetric solutions of the resulting field equations and propose a pinch solution which interpolates between degenerate vacua along the string, labelled by ±|n|. This configuration corresponds to a vortex which shrinks to the Planck scale before re-emerging as an anti-vortex, resulting in the formation of a bead pair with one bead either side of the intersection. The solution is then topologically stable. A key assumption is that quantities such as phase and winding number, along with those which depend on them like the magnetic flux, become undefined at the Planck scale so that regions of opposite winding may be joined via a Planck-sized segment of neutral string. Similarities between this solution and the extra-dimensional windings of strings in type IIB string theory are discussed and a correspondence between field theory and string theory parameters is suggested. The spatial-dependence of the field couplings is found to have a natural interpretation in the string picture and results from the variation of the winding radius, giving rise to a varying (effective) string coupling. An interesting result is an estimate of the Higgs mass (at critical coupling) in terms of the parameters which define the Klebanov-Strassler geometry and which, in principle, may be constrained by cosmological observations.


String theory and cosmic strings Topological Strings String Duality Brane Dynamics in Gauge Theories 


  1. [1]
    A. Avgoustidis and E.P.S. Shellard, Cosmic string evolution in higher dimensions, Phys. Rev. D 71 (2005) 123513 [hep-ph/0410349] [SPIRES].ADSGoogle Scholar
  2. [2]
    A. Avgoustidis and E.P.S. Shellard, Cycloops: Dark matter or a monopole problem for brane inflation?, JHEP 08 (2005) 092 [hep-ph/0504049] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    A. Avgoustidis, Cosmic String Dynamics and Evolution in Warped Spacetime, Phys. Rev. D 78 (2008) 023501 [arXiv:0712.3224] [SPIRES].ADSGoogle Scholar
  4. [4]
    J.J. Blanco-Pillado and A. Iglesias, Strings at the bottom of the deformed conifold, JHEP 08 (2005) 040 [hep-th/0504068] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    M. Lake, S. Thomas and J. Ward, String Necklaces and Primordial Black Holes from Type IIB Strings, JHEP 12 (2009) 033 [arXiv:0906.3695] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    M. Lake, S. Thomas and J. Ward, Non-topological Cycloops, JCAP 01 (2010) 026 [arXiv:0911.3118] [SPIRES].ADSGoogle Scholar
  7. [7]
    T. Matsuda, Brane necklaces and brane coils, JHEP 05 (2005) 015 [hep-ph/0412290] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    T. Matsuda, PBH and DM from cosmic necklaces, hep-ph/0601014 [SPIRES].
  9. [9]
    T. Matsuda, Primordial black holes from cosmic necklaces, JHEP 04 (2006) 017 [hep-ph/0509062] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    T. Matsuda, Dark matter production from cosmic necklaces, JCAP 04 (2006) 005 [hep-ph/0509064] [SPIRES].ADSGoogle Scholar
  11. [11]
    A. Vilenkin and E.P.S. Shellard, Cosmic strings and other topological defects, in Cambridge Monographs in Mathematical Physics, Cambridge University Press (2000).Google Scholar
  12. [12]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades and χSB-resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    B.J. Carr, K. Kohri, Y. Sendouda and J. Yokoyama, New cosmological constraints on primordial black holes, Phys. Rev. D 81 (2010) 104019 [arXiv:0912.5297] [SPIRES].ADSGoogle Scholar
  14. [14]
    V. Berezinsky and A. Vilenkin, Cosmic necklaces and ultrahigh energy cosmic rays, Phys. Rev. Lett. 79 (1997) 5202 [astro-ph/9704257] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    L. Perivolaropoulos, Asymptotics of Nielsen-Olesen Vortices Phys. Rev. D 48 (1993) 5961 [hep-ph/9310264v1] [SPIRES].ADSGoogle Scholar
  16. [16]
    H.B. Nielsen and P. Olesen, Vortex-line models for dual strings, Nucl. Phys. B 61 (1973) 45 [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    M.B. Hindmarsh and T.W.B. Kibble, Cosmic strings, Rept. Prog. Phys. 58 (1995) 477 [hep-ph/9411342] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    E.B. Bogomol’nyi and A.I. Vainstein Stability of strings in gauge abelian theory Sov. J. Nucl. Phys. 23 (1976) 588.Google Scholar
  19. [19]
    J. Preskill, Vortices and Monopoles, Lectures presneted at the 1985 Les Houches Summer School US D.O.E. Research and Development Report, CALT-66-1287 (1986).Google Scholar
  20. [20]
    E.B. Bogomolny, Stability of Classical Solutions, Sov. J. Nucl. Phys. 24 (1976) 449 [SPIRES].Google Scholar
  21. [21]
    H.J. de Vega and F.A. Schaposnik, A Classical Vortex Solution of the Abelian Higgs Model, Phys. Rev. D 14 (1976) 1100 [SPIRES].ADSGoogle Scholar
  22. [22]
    J.R. Hook and H.E. Hall, Solid State Physics (2nd Ed.), John Wiley and Sons (2001) [ISBN: 0-471-92805-4].Google Scholar
  23. [23]
    J.F. Annett, Superconductivity, Superfluids and Condensates, OUP, [ISBN-13: 978–0198507567] (2004).Google Scholar
  24. [24]
    H. Firouzjahi, L. Leblond and S.H. Henry Tye, The (p,q) string tension in a warped deformed conifold, JHEP 05 (2006) 047 [hep-th/0603161] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    J.H. Schwarz, An SL(2,Z) multiplet of type IIB superstrings, Phys. Lett. B 360 (1995) 13 [Erratum ibid. B 364 (1995) 252] [hep-th/9508143] [SPIRES].ADSGoogle Scholar
  26. [26]
    S. Thomas and J. Ward, Non-Abelian (p,q) strings in the warped deformed conifold, JHEP 12 (2006) 057 [hep-th/0605099] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    H. Firouzjahi, Dielectric (p,q) strings in a throat, JHEP 12 (2006) 031 [hep-th/0610130] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    E.J. Copeland and P.M. Saffin, On the evolution of cosmic-superstring networks, JHEP 11 (2005) 023 [hep-th/0505110] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    J. Polchinski, Cosmic String Loops and Gravitational Radiation, arXiv:0707.0888 [SPIRES].
  30. [30]
    N. Bevis, M. Hindmarsh, M. Kunz and J. Urrestilla, CMB power spectrum contribution from cosmic strings using field-evolution simulations of the Abelian Higgs model, Phys. Rev. D 75 (2007) 065015 [astro-ph/0605018] [SPIRES].ADSGoogle Scholar
  31. [31]
    L. Leblond and M. Wyman, Cosmic Necklaces from String Theory, Phys. Rev. D 75 (2007) 123522 [astro-ph/0701427] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    J.J. Blanco-Pillado and K.D. Olum, Monopole annihilation in cosmic necklaces, JCAP 05 (2010) 014 [arXiv:0707.3460] [SPIRES].ADSGoogle Scholar
  33. [33]
    H. Firouzjahi, J. Karouby, S. Khosravi and R. Brandenberger, Zipping and Unzipping of Cosmic String Loops in Collision, Phys. Rev. D 80 (2009) 083508 [arXiv:0907.4986] [SPIRES].ADSGoogle Scholar
  34. [34]
    H. Firouzjahi, S. Khoeini-Moghaddam and S. Khosravi, Cosmic Strings Collision in Cosmological Backgrounds, Phys. Rev. D 81 (2010) 123506 [arXiv:1004.0068] [SPIRES].ADSGoogle Scholar
  35. [35]
    W.H. Zurek, Cosmological Experiments in Superfluid Helium?, Nature 317 (1985) 505 [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    W.H. Zurek, Cosmological Experiments in Condensed Matter Systems, Phys. Rept. 276 (1996) 177 [cond-mat/9607135] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    W.H. Zurek, Cosmological experiments in superfluids and superconductors, Prepared for NATO Advanced Study Institute on Formation and Interactions of Topological Defects, Cambridge, England, 21 Aug–3 Sep 1994 [SPIRES].
  38. [38]
    M.J. Bowick, L. Chandar, E.A. Schiff and A.M. Srivastava, The Cosmological Kibble mechanism in the laboratory: String formation in liquid crystals, Science 263 (1994) 943 [hep-ph/9208233] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    G.A. Williams, Vortex loop phase transitions in liquid helium, cosmic strings and high-T(c) superconductors, Phys. Rev. Lett. 82 (1999) 1201 [cond-mat/9807338] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    P.C. Hendry, N.S. Lawson, R.A.M. Lee, P.V.E. McClintock and C.D.H. Williams, Creation of quantized vortices at the lambda transition in liquid helium-4, J. Low Temp. Phys. 93 (1995) 1059 [cond-mat/9502119].ADSCrossRefGoogle Scholar
  41. [41]
    I. Chuang, B. Yurke, R. Durrer and N. Turok, Cosmology in the laboratory: Defect dynamics in liquid crystals, Science 251 (1991) 1336 [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    C.J.A.P. Martins, Evolution of Cosmic Necklaces and Lattices, Phys. Rev. D 82 (2010) 067301 [arXiv:1009.1707] [SPIRES].ADSGoogle Scholar
  43. [43]
    C.J.A.P. Martins and A. Achucarro, Evolution of local and global monopole networks, arXiv:0806.2671 [SPIRES].
  44. [44]
    M. Lake, Cosmic Necklaces in String Theory and Field Theory PhD Thesis, Queen Mary, University of London, U.K. (2010).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Center for Research in String TheoryQueen Mary, University of LondonLondonU.K.
  2. 2.Astronomy Unit, School of Mathematical SciencesQueen Mary, University of LondonLondonU.K.
  3. 3.Department of Physics and AstronomyUniversity of VictoriaVictoriaCanada

Personalised recommendations