Advertisement

An A 5 model of four lepton generations

  • Chian-Shu Chen
  • Thomas W. Kephart
  • Tzu-Chiang Yuan
Article

Abstract

We study the lepton sector of a four generations model based on the discrete flavor group A 5. The best features of the three family A 4 model survive, including the tribimaximal pattern of three generation neutrino mixings. At leading order the three light neutrino mass relations of \( {m_{{v_1}}} = {m_{{v_3}}} \) and \( {m_{{v_2}}} = 0 \) are predicted. The splitting of the neutrino masses can be naturally obtained as a result of the breaking of A 5 down to A 4 and a degenerate spectrum is preferred in our model. The electron mass is zero at tree level, but calculable through quantum corrections in our A 5 model.

Keywords

Higgs Physics Beyond Standard Model Quark Masses and SM Parameters Neutrino Physics 

References

  1. [1]
    H.-J. He, N. Polonsky and S.-f. Su, Extra families, Higgs spectrum and oblique corrections, Phys. Rev. D 64 (2001) 053004 [hep-ph/0102144] [SPIRES].ADSGoogle Scholar
  2. [2]
    J. Erler and P. Langacker, Precision Constraints on Extra Fermion Generations, Phys. Rev. Lett. 105 (2010) 031801 [arXiv:1003.3211] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    M.S. Chanowitz, Bounding CKM Mixing with a Fourth Family, Phys. Rev. D 79 (2009) 113008 [arXiv:0904.3570] [SPIRES].ADSGoogle Scholar
  4. [4]
    O. Eberhardt, A. Lenz and J. Rohrwild, Less space for a new family of fermions, Phys. Rev. D 82 (2010) 095006 [arXiv:1005.3505] [SPIRES].ADSGoogle Scholar
  5. [5]
    P.Q. Hung and M. Sher, Experimental constraints on fourth generation quark masses, Phys. Rev. D 77 (2008) 037302 [arXiv:0711.4353] [SPIRES].ADSGoogle Scholar
  6. [6]
    G.D. Kribs, T. Plehn, M. Spannowsky and T.M.P. Tait, Four generations and Higgs physics, Phys. Rev. D 76 (2007) 075016 [arXiv:0706.3718] [SPIRES].ADSGoogle Scholar
  7. [7]
    T. Cuhadar-Donszelmann, M. Karagoz, V.E. Ozcan, S. Sultansoy and G. Unel, Fourth Family Neutrinos and the Higgs Boson, JHEP 10 (2008) 074 [arXiv:0806.4003] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    P.Q. Hung and C. Xiong, Renormalization Group Fixed Point with a Fourth Generation: Higgs-induced Bound States and Condensates, Nucl. Phys. B 847 (2011) 160 [arXiv:0911.3890] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    P.Q. Hung and C. Xiong, Implication of a Quasi Fixed Point with a Heavy Fourth Generation: The emergence of a TeV-scale physical cutoff, Phys. Lett. B 694 (2011) 430 [arXiv:0911.3892] [SPIRES].ADSGoogle Scholar
  10. [10]
    M.S. Chanowitz, Higgs Mass Constraints on a Fourth Family: Upper and Lower Limits on CKM Mixing, Phys. Rev. D (2010) 035018 [arXiv:1007.0043] [SPIRES].
  11. [11]
    S. Dawson and P. Jaiswal, Four Generations, Higgs Physics and the MSSM, Phys. Rev. D 82 (2010) 073017 [arXiv:1009.1099] [SPIRES].ADSGoogle Scholar
  12. [12]
    W.-S. Hou, M. Nagashima and A. Soddu, Large time-dependent CP-violation in B/s0 system and finite \( {D^0} - {\bar{D}^0} \) mass difference in four generation standard model, Phys. Rev. D 76 (2007) 016004 [hep-ph/0610385] [SPIRES].ADSGoogle Scholar
  13. [13]
    W.-S. Hou, H.-n. Li, S. Mishima and M. Nagashima, Fourth generation CP-violation effect on BKπ, ϕK and ρK in NLO PQCD, Phys. Rev. Lett. 98 (2007) 131801 [hep-ph/0611107] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    A. Soni, A.K. Alok, A. Giri, R. Mohanta and S. Nandi, The Fourth family: A Natural explanation for the observed pattern of anomalies in BCP asymmetries, Phys. Lett. B 683 (2010) 302 [arXiv:0807.1971] [SPIRES].ADSGoogle Scholar
  15. [15]
    M. Bobrowski, A. Lenz, J. Riedl and J. Rohrwild, How much space is left for a new family of fermions?, Phys. Rev. D 79 (2009) 113006 [arXiv:0902.4883] [SPIRES].ADSGoogle Scholar
  16. [16]
    W.-S. Hou, Y.-Y. Mao and C.-H. Shen, Leading Effect of CP-violation with Four Generations, Phys. Rev. D 82 (2010) 036005 [arXiv:1003.4361] [SPIRES].ADSGoogle Scholar
  17. [17]
    B. Holdom, t’ at the LHC: The physics of discovery, JHEP 03 (2007) 063 [hep-ph/0702037] [SPIRES].
  18. [18]
    B. Holdom, The heavy quark search at the LHC, JHEP 08 (2007) 069 [arXiv:0705.1736] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    L.M. Carpenter, A. Rajaraman and D. Whiteson, Searches for Fourth Generation Charged Leptons, arXiv:1010.1011 [SPIRES].
  20. [20]
    A. Lenz, H. Pas and D. Schalla, Constraints on fourth generation Majorana neutrinos, J. Phys. Conf. Ser. 259 (2010) 012096 [arXiv:1010.3883] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    B. Holdom et al., Four Statements about the Fourth Generation, PMC Phys. A 3 (2009) 4 [arXiv:0904.4698] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [SPIRES].ADSGoogle Scholar
  23. [23]
    K.S. Babu, E. Ma and J.W.F. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [SPIRES].ADSGoogle Scholar
  24. [24]
    E. Ma, A 4 origin of the neutrino mass matrix, Phys. Rev. D 70 (2004) 031901 [hep-ph/0404199] [SPIRES].ADSGoogle Scholar
  25. [25]
    E. Ma, Aspects of the tetrahedral neutrino mass matrix, Phys. Rev. D 72 (2005) 037301 [hep-ph/0505209] [SPIRES].ADSGoogle Scholar
  26. [26]
    E. Ma, Suitability of A 4 as a Family Symmetry in Grand Unification, Mod. Phys. Lett. A 21 (2006) 2931 [hep-ph/0607190] [SPIRES].ADSGoogle Scholar
  27. [27]
    G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    G. Altarelli and F. Feruglio, Tri-Bimaximal Neutrino Mixing, A 4 and the Modular Symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) Grand Unified Model of Tri-Bimaximal Mixing from A 4, JHEP 03 (2008) 052 [arXiv:0802.0090] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    A. Zee, Obtaining the neutrino mixing matrix with the tetrahedral group, Phys. Lett. B 630 (2005) 58 [hep-ph/0508278] [SPIRES].ADSMathSciNetGoogle Scholar
  31. [31]
    X.-G. He, Y.-Y. Keum and R.R. Volkas, A 4 flavour symmetry breaking scheme for understanding quark and neutrino mixing angles, JHEP 04 (2006) 039 [hep-ph/0601001] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    S.F. King and M. Malinsky, A 4 family symmetry and quark-lepton unification, Phys. Lett. B 645 (2007) 351 [hep-ph/0610250] [SPIRES].ADSGoogle Scholar
  33. [33]
    S. Morisi, M. Picariello and E. Torrente-Lujan, A model for fermion masses and lepton mixing in SO(10) × A 4, Phys. Rev. D 75 (2007) 075015 [hep-ph/0702034] [SPIRES].ADSGoogle Scholar
  34. [34]
    F. Bazzocchi, S. Kaneko and S. Morisi, A SUSY A 4 model for fermion masses and mixings, JHEP 03 (2008) 063 [arXiv:0707.3032] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    P.H. Frampton and S. Matsuzaki, Renormalizable A 4 Model for Lepton Sector, arXiv:0806.4592 [SPIRES].
  36. [36]
    A. Datta, F.-S. Ling and P. Ramond, Correlated hierarchy, Dirac masses and large mixing angles, Nucl. Phys. B 671 (2003) 383 [hep-ph/0306002] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    Y. Kajiyama, M. Raidal and A. Strumia, The golden ratio prediction for the solar neutrino mixing, Phys. Rev. D 76 (2007) 117301 [arXiv:0705.4559] [SPIRES].ADSGoogle Scholar
  38. [38]
    Euclid of Alexandria, Elements, Book 6, Definition 3, A straight line is said to have been cut in extreme and mean ratio when, as the whole line is to the greater segment, so is the greater to the less.Google Scholar
  39. [39]
    C.J. Cummins and J. Patera, Polynomial Icosahedral Invariants, J. Math. Phys. 29 (1988) 1736 [SPIRES].ADSMATHCrossRefMathSciNetGoogle Scholar
  40. [40]
    K. Shirai, The Basis Functions and the Matrix Representations of the Single and Double Icosahedral Point Group, J. Phys. Soc. Jpn. 61 (1992) 2735. ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    C. Luhn, S. Nasri and P. Ramond, Simple Finite Non-Abelian Flavor Groups, J. Math. Phys. 48 (2007) 123519 [arXiv:0709.1447] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    P.O. Ludl, Systematic analysis of finite family symmetry groups and their application to the lepton sector, arXiv:0907.5587 [SPIRES].
  43. [43]
    H. Ishimori et al., Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [SPIRES].ADSMATHCrossRefGoogle Scholar
  44. [44]
    L.L. Everett and A.J. Stuart, Icosahedral (A5) Family Symmetry and the Golden Ratio Prediction for Solar Neutrino Mixing, Phys. Rev. D 79 (2009) 085005 [arXiv:0812.1057] [SPIRES].ADSGoogle Scholar
  45. [45]
    W. Rodejohann, Unified Parametrization for Quark and Lepton Mixing Angles, Phys. Lett. B 671 (2009) 267 [arXiv:0810.5239] [SPIRES].ADSGoogle Scholar
  46. [46]
    S.M. Barr and A. Zee, A New Approach to the electron-Muon Mass Ratio, Phys. Rev. D 15 (1977) 2652 [SPIRES].ADSGoogle Scholar
  47. [47]
    L3 collaboration, P. Achard et al., Search for heavy neutral and charged leptons in e + e annihilation at LEP, Phys. Lett. B 517 (2001) 75 [hep-ex/0107015] [SPIRES].ADSGoogle Scholar
  48. [48]
    H. Georgi and S.L. Glashow, Attempts to calculate the electron mass, Phys. Rev. D7 (1973) 2457 [SPIRES].ADSGoogle Scholar
  49. [49]
    S.M. Barr and A. Zee, Calculating the Electron Mass in Terms of Measured Quantities, Phys. Rev. D 17 (1978) 1854 [SPIRES].ADSGoogle Scholar
  50. [50]
    B.S. Balakrishna, Radiatively Induced Lepton Masses, Phys. Lett. B 214 (1988) 267 [SPIRES].ADSGoogle Scholar
  51. [51]
    S.M. Barr, Light Fermion Mass Hierarchy and Grand Unification, Phys. Rev. D 21 (1980) 1424 [SPIRES].ADSGoogle Scholar
  52. [52]
    L.E. Ibáñez, Hierarchical Suppression of Radiative Quark and Lepton Masses in Supersymmetric Guts, Phys. Lett. B 117 (1982) 403 [SPIRES].ADSGoogle Scholar
  53. [53]
    B.S. Balakrishna, Fermion Mass Hierarchy From Radiative Corrections, Phys. Rev. Lett. 60 (1988) 1602 [SPIRES].ADSCrossRefGoogle Scholar
  54. [54]
    K.S. Babu and E. Ma, Radiative Mechanisms for Generating Quark and Lepton Masses: Some Recent Developments, Mod. Phys. Lett. A 4 (1989) 1975 [SPIRES].ADSGoogle Scholar
  55. [55]
    X.-G. He, R.R. Volkas and D.-D. Wu, Radiative Generation of Quark and Lepton Mass Hierarchies from a Top Quark Mass Seed, Phys. Rev. D 41 (1990) 1630 [SPIRES].ADSGoogle Scholar
  56. [56]
    K.S. Babu and R.N. Mohapatra, Permutation Symmetry and the Origin of Fermion Mass Hierarchy, Phys. Rev. Lett. 64 (1990) 2747 [SPIRES].ADSCrossRefGoogle Scholar
  57. [57]
    S.M. Barr, Radiative Fermion Mass Hierarchy in a Non-supersymmetric Unified Theory, Phys. Rev. D 76 (2007) 105024 [arXiv:0706.1490] [SPIRES].ADSGoogle Scholar
  58. [58]
    B.A. Dobrescu and P.J. Fox, Quark and lepton masses from top loops, JHEP 08 (2008) 100 [arXiv:0805.0822] [SPIRES].ADSCrossRefGoogle Scholar
  59. [59]
    E. Ma, A 4 origin of the neutrino mass matrix, Phys. Rev. D 70 (2004) 031901 [hep-ph/0404199] [SPIRES].ADSGoogle Scholar
  60. [60]
    F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton Flavour Violation in Models with A 4 Flavour Symmetry, Nucl. Phys. B 809 (2009) 218 [arXiv:0807.3160] [SPIRES].ADSCrossRefGoogle Scholar
  61. [61]
    C. Hagedorn, E. Molinaro and S.T. Petcov, Charged Lepton Flavour Violating Radiative Decays ℓ i j + γ in See-Saw Models with A 4 Symmetry, JHEP 02 (2010) 047 [arXiv:0911.3605] [SPIRES].ADSCrossRefGoogle Scholar
  62. [62]
    F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton Flavour Violation in a Supersymmetric Model with A 4 Flavour Symmetry, Nucl. Phys. B 832 (2010) 251 [arXiv:0911.3874] [SPIRES].ADSCrossRefGoogle Scholar
  63. [63]
    G.-J. Ding and J.-F. Liu, Lepton Flavor Violation in Models with A 4 and S 4 Flavor Symmetries, JHEP 05 (2010) 029 [arXiv:0911.4799] [SPIRES].ADSCrossRefGoogle Scholar
  64. [64]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  65. [65]
    F. Jegerlehner and A. Nyffeler, The Muon g-2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [SPIRES].ADSCrossRefGoogle Scholar
  66. [66]
    B. He, T.P. Cheng and L.-F. Li, A less suppressed μeγ loop amplitude and extra dimension theories, Phys. Lett. B 553 (2003) 277 [hep-ph/0209175] [SPIRES].ADSGoogle Scholar
  67. [67]
    P.Q. Hung, Electroweak-scale mirror fermions, μeγ and τμγ, Phys. Lett. B 659 (2008) 585 [arXiv:0711.0733] [SPIRES].ADSGoogle Scholar
  68. [68]
    P.H. Frampton and T.W. Kephart, Simple nonAbelian finite flavor groups and fermion masses, Int. J. Mod. Phys. A 10 (1995) 4689 [hep-ph/9409330] [SPIRES].ADSMathSciNetGoogle Scholar
  69. [69]
    A. Aranda, C.D. Carone and R.F. Lebed, Maximal neutrino mixing from a minimal flavor symmetry, Phys. Rev. D 62 (2000) 016009 [hep-ph/0002044] [SPIRES].ADSGoogle Scholar
  70. [70]
    M.-C. Chen and K.T. Mahanthappa, CKM and Tri-bimaximal MNS Matrices in a SU(5) × (d) T Model, Phys. Lett. B 652 (2007) 34 [arXiv:0705.0714] [SPIRES].ADSGoogle Scholar
  71. [71]
    P.H. Frampton and T.W. Kephart, Flavor Symmetry for Quarks and Leptons, JHEP 09 (2007) 110 [arXiv:0706.1186] [SPIRES].ADSCrossRefGoogle Scholar
  72. [72]
    P.H. Frampton, T.W. Kephart and S. Matsuzaki, Simplified Renormalizable T′ Model for Tribimaximal Mixing and Cabibbo Angle, Phys. Rev. D 78 (2008) 073004 [arXiv:0807.4713] [SPIRES].ADSGoogle Scholar
  73. [73]
    P.H. Frampton and S. Matsuzaki, T′ Predictions of PMNS and CKM Angles, Phys. Lett. B 679 (2009) 347 [arXiv:0902.1140] [SPIRES].ADSGoogle Scholar
  74. [74]
    C.-S. Chen, T.W. Kephart and T.C. Yuan, work in progress.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Chian-Shu Chen
    • 1
    • 2
  • Thomas W. Kephart
    • 3
  • Tzu-Chiang Yuan
    • 2
  1. 1.Physics DivisionNational Center for Theoretical SciencesTaiwanR.O.C.
  2. 2.Institute of PhysicsAcademia SinicaTaipeiTaiwan
  3. 3.Department of Physics and astronomyVanderbilt UniversityNashvilleU.S.A.

Personalised recommendations