SUSY parameter determination at the LHC using cross sections and kinematic edges

  • Herbi K. Dreiner
  • Michael Krämer
  • Jonas M. Lindert
  • Ben O’Leary
Open Access


We study the determination of supersymmetric parameters at the LHC from a global fit including cross sections and edges of kinematic distributions. For illustration, we focus on a minimal supergravity scenario and discuss how well it can be constrained at the LHC operating at collision energies of 7 and 14TeV. We find that the inclusion of cross sections greatly improves the accuracy of the SUSY parameter determination, and allows the reliable extraction of model parameters even in the initial phase of LHC data taking with 7TeV collision energy and 1 fb−1 integrated luminosity. Moreover, cross section information may be essential to study more general scenarios, such as those with non-universal gaugino masses, and distinguish them from minimal, universal, models.


Supersymmetry Phenomenology 


  1. [1]
    Y.A. Golfand and E.P. Likhtman, Extension of the algebra of Poincaré group generators and violation of p invariance, JETP Lett. 13 (1971) 323 [Pisma Zh. Eksp. Teor. Fiz. 13 (1971) 452] [SPIRES].ADSGoogle Scholar
  2. [2]
    J. Wess and B. Zumino, Supergauge transformations in four-dimensions, Nucl. Phys. B 70 (1974) 39 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric relics from the Big Bang, Nucl. Phys. B 238 (1984) 453 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    I. Hinchliffe, F.E. Paige, M.D. Shapiro, J. Soderqvist and W. Yao, Precision SUSY measurements at CERN LHC, Phys. Rev. D 55 (1997) 5520 [hep-ph/9610544] [SPIRES].ADSGoogle Scholar
  8. [8]
    B.C. Allanach, C.G. Lester, M.A. Parker and B.R. Webber, Measuring sparticle masses in non-universal string inspired models at the LHC, JHEP 09 (2000) 004 [hep-ph/0007009] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    B.K. Gjelsten, D.J. Miller and P. Osland, Measurement of SUSY masses via cascade decays for SPS 1a, JHEP 12 (2004) 003 [hep-ph/0410303] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    LHC/LC Study Group collaboration, G. Weiglein et al., Physics interplay of the LHC and the ILC, Phys. Rept. 426 (2006) 47 [hep-ph/0410364] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    C.G. Lester, M.A. Parker and M.J. White, Determining SUSY model parameters and masses at the LHC using cross-sections, kinematic edges and other observables, JHEP 01 (2006) 080 [hep-ph/0508143] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    P. Bechtle, K. Desch, W. Porod and P. Wienemann, Determination of MSSM parameters from LHC and ILC observables in a global fit, Eur. Phys. J. C 46 (2006) 533 [hep-ph/0511006] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring supersymmetry, Eur. Phys. J. C 54 (2008) 617 [arXiv:0709.3985] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    E. Turlay, The MSSM with decoupled scalars at the LHC, arXiv:0805.2272 [SPIRES].
  15. [15]
    L. Roszkowski, R. Ruiz de Austri and R. Trotta, Efficient reconstruction of CMSSM parameters from LHC data — A case study, arXiv:0907.0594 [SPIRES].
  16. [16]
    P. Bechtle, K. Desch, M. Uhlenbrock and P. Wienemann, Constraining SUSY models with Fittino using measurements before, with and beyond the LHC, Eur. Phys. J. C 66 (2010) 215 [arXiv:0907.2589] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    B.C. Allanach, SUSY predictions and SUSY tools at the LHC, Eur. Phys. J. C 59 (2009) 427 [arXiv:0805.2088] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    H. Baer, Computational tools for supersymmetry calculations, arXiv:0912.3270 [SPIRES].
  19. [19]
    P. Bechtle, K. Desch and P. Wienemann, Fittino, a program for determining MSSM parameters from collider observables using an iterative method, Comput. Phys. Commun. 174 (2006) 47 [hep-ph/0412012] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    P. Bechtle, K. Desch and P. Wienemann, private communication.Google Scholar
  21. [21]
    C.G. Lester, M.A. Parker and M.J. White, Three body kinematic endpoints in SUSY models with non-universal Higgs masses, JHEP 10 (2007) 051 [hep-ph/0609298] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    H. Baer, V. Barger, G. Shaughnessy, H. Summy and L.-t. Wang, Precision gluino mass at the LHC in SUSY models with decoupled scalars, Phys. Rev. D 75 (2007) 095010 [hep-ph/0703289] [SPIRES].ADSGoogle Scholar
  23. [23]
    K. Choi and H.P. Nilles, The gaugino code, JHEP 04 (2007) 006 [hep-ph/0702146] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [SPIRES].ADSGoogle Scholar
  25. [25]
    H.-C. Cheng, K.T. Matchev and M. Schmaltz, Bosonic supersymmetry? Getting fooled at the CERN LHC, Phys. Rev. D 66 (2002) 056006 [hep-ph/0205314] [SPIRES].ADSGoogle Scholar
  26. [26]
    J.M. Smillie and B.R. Webber, Distinguishing spins in supersymmetric and universal extra dimension models at the Large Hadron Collider, JHEP 10 (2005) 069 [hep-ph/0507170] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    G.L. Kane, A.A. Petrov, J. Shao and L.-T. Wang, Initial determination of the spins of the gluino and squarks at LHC, J. Phys. G 37 (2010) 045004 [arXiv:0805.1397] [SPIRES].ADSGoogle Scholar
  28. [28]
    J. Hubisz, J. Lykken, M. Pierini and M. Spiropulu, Missing energy look-alikes with 100 pb −1 at the LHC, Phys. Rev. D 78 (2008) 075008 [arXiv:0805.2398] [SPIRES].ADSGoogle Scholar
  29. [29]
    B.C. Allanach et al., The Snowmass points and slopes: benchmarks for SUSY searches, in the proceedings of the APS/DPF/DPB Summer Study on the Future of Particle Physics, June 30–July 21, Snowmass U.S.A. (2001), Eur. Phys. J. C 25 (2002) 113 [hep-ph/0202233] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark production at the Tevatron, Phys. Rev. Lett. 74 (1995) 2905 [hep-ph/9412272] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Gluino pair production at the Tevatron, Z. Phys. C 69 (1995) 163 [hep-ph/9505416] [SPIRES].Google Scholar
  33. [33]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [SPIRES].ADSGoogle Scholar
  34. [34]
    W. Beenakker, M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, Stop production at hadron colliders, Nucl. Phys. B 515 (1998) 3 [hep-ph/9710451] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    A. Kulesza and L. Motyka, Threshold resummation for squark-antisquark and gluino-pair production at the LHC, Phys. Rev. Lett. 102 (2009) 111802 [arXiv:0807.2405] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    U. Langenfeld and S.-O. Moch, Higher-order soft corrections to squark hadro-production, Phys. Lett. B 675 (2009) 210 [arXiv:0901.0802] [SPIRES].ADSGoogle Scholar
  37. [37]
    A. Kulesza and L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC, Phys. Rev. D 80 (2009) 095004 [arXiv:0905.4749] [SPIRES].ADSGoogle Scholar
  38. [38]
    M. Beneke, P. Falgari and C. Schwinn, Soft radiation in heavy-particle pair production: all-order colour structure and two-loop anomalous dimension, Nucl. Phys. B 828 (2010) 69 [arXiv:0907.1443] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    W. Beenakker et al., Soft-gluon resummation for squark and gluino hadroproduction, JHEP 12 (2009) 041 [arXiv:0909.4418] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    G. Bozzi, B. Fuks and M. Klasen, Non-diagonal and mixed squark production at hadron colliders, Phys. Rev. D 72 (2005) 035016 [hep-ph/0507073] [SPIRES].ADSGoogle Scholar
  41. [41]
    A.T. Alan, K. Cankocak and D.A. Demir, Squark pair production in the MSSM with explicit CP-violation, Phys. Rev. D 75 (2007) 095002 [Erratum ibid. D 76 (2007) 119903] [hep-ph/0702289] [SPIRES].ADSGoogle Scholar
  42. [42]
    S. Bornhauser, M. Drees, H.K. Dreiner and J.S. Kim, Electroweak contributions to squark pair production at the LHC, Phys. Rev. D 76 (2007) 095020 [arXiv:0709.2544] [SPIRES].ADSGoogle Scholar
  43. [43]
    W. Hollik, M. Kollar and M.K. Trenkel, Hadronic production of top-squark pairs with electroweak NLO contributions, JHEP 02 (2008) 018 [arXiv:0712.0287] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    W. Hollik and E. Mirabella, Squark anti-squark pair production at the LHC: the electroweak contribution, JHEP 12 (2008) 087 [arXiv:0806.1433] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    W. Hollik, E. Mirabella and M.K. Trenkel, Electroweak contributions to squark–gluino production at the LHC, JHEP 02 (2009) 002 [arXiv:0810.1044] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    E. Mirabella, NLO electroweak contributions to gluino pair production at hadron colliders, JHEP 12 (2009) 012 [arXiv:0908.3318] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the PROduction of Supersymmetric Particles In Next-to-leading Order QCD, hep-ph/9611232 [SPIRES] [˜plehn/prospino/] [].
  48. [48]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [SPIRES].ADSGoogle Scholar
  50. [50]
    R.D. Ball et al., A first unbiased global NLO determination of parton distributions and their uncertainties, 1002.4407 [SPIRES].
  51. [51]
    D. Berdine, N. Kauer and D. Rainwater, Breakdown of the narrow width approximation for new physics, Phys. Rev. Lett. 99 (2007) 111601 [hep-ph/0703058] [SPIRES].CrossRefADSGoogle Scholar
  52. [52]
    J.M. Lindert, SUSY parameter determination at the LHC, Diploma thesis, RWTH Aachen, Aachen, Germany (2010)Google Scholar
  53. [53]
    M. Bähr et al., HERWIG++ physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    N. Metropolis et al., Equation of state calculations by fast computing machines, J. Chem. Phys. 21 (1953) 1087 [SPIRES].CrossRefADSGoogle Scholar
  55. [55]
    The ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment — Detector, trigger and physics, arXiv:0901.0512 [SPIRES].
  56. [56]
    CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: physics performance, J. Phys. G 34 (2007) 995 [SPIRES].ADSGoogle Scholar
  57. [57]
    N. Mohr, Dilepton mass edge measurement in SUSY events with CMS, arXiv:0904.3408 [SPIRES].
  58. [58]
    K. Roth, Rekonstruktion supersymmetrischer Zerfallskaskaden mit dem CMS-Experiment, Diploma thesis, RWTH Aachen, Aachen, Germany (2009).Google Scholar
  59. [59]
    C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [SPIRES].ADSGoogle Scholar
  60. [60]
    A. Barr, C. Lester and P. Stephens, m T2 : the truth behind the glamour, J. Phys. G 29 (2003) 2343 [hep-ph/0304226] [SPIRES].ADSGoogle Scholar
  61. [61]
    B.C. Allanach, S. Kraml and W. Porod, Theoretical uncertainties in sparticle mass predictions from computational tools, JHEP 03 (2003) 016 [hep-ph/0302102] [SPIRES].CrossRefADSGoogle Scholar
  62. [62]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [SPIRES].CrossRefADSGoogle Scholar
  63. [63]
    D. Hooper and T. Plehn, Supersymmetric dark matter: how light can the LSP be?, Phys. Lett. B 562 (2003) 18 [hep-ph/0212226] [SPIRES].ADSGoogle Scholar
  64. [64]
    H.K. Dreiner et al., Mass bounds on a very light neutralino, Eur. Phys. J. C 62 (2009) 547 [arXiv:0901.3485] [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    H.K. Dreiner et al., Rare meson decays into very light neutralinos, Phys. Rev. D 80 (2009) 035018 [arXiv:0905.2051] [SPIRES].ADSGoogle Scholar
  66. [66]
    R. Trotta, F. Feroz, M.P. Hobson, L. Roszkowski and R. Ruiz de Austri, The impact of priors and observables on parameter inferences in the Constrained MSSM, JHEP 12 (2008) 024 [arXiv:0809.3792] [SPIRES].CrossRefADSGoogle Scholar
  67. [67]
    H. Flacher et al., Gfitter — Revisiting the global electroweak fit of the standard model and beyond, Eur. Phys. J. C 60 (2009) 543 [arXiv:0811.0009] [SPIRES].CrossRefADSGoogle Scholar
  68. [68]
    S.S. AbdusSalam, B.C. Allanach, F. Quevedo, F. Feroz and M. Hobson, Fitting the phenomenological MSSM, arXiv:0904.2548 [SPIRES].
  69. [69]
    O. Buchmueller et al., Likelihood functions for supersymmetric observables in frequentist analyses of the CMSSM and NUHM1, Eur. Phys. J. C 64 (2009) 391 [arXiv:0907.5568] [SPIRES].CrossRefADSGoogle Scholar
  70. [70]
    Y. Akrami, P. Scott, J. Edsjo, J. Conrad and L. Bergstrom, A profile likelihood analysis of the constrained MSSM with genetic algorithms, JHEP 04 (2010) 057 [arXiv:0910.3950] [SPIRES].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Herbi K. Dreiner
    • 1
    • 2
  • Michael Krämer
    • 3
  • Jonas M. Lindert
    • 3
  • Ben O’Leary
    • 3
  1. 1.Bethe Centre for Theoretical Physics & Physikalisches InstitutUniversität BonnBonnGermany
  2. 2.SCIPPUniversity of CaliforniaSanta CruzU.S.A.
  3. 3.Institut für Theoretische Teilchenphysik und KosmologieRWTH Aachen UniversityAachenGermany

Personalised recommendations