Bounds on black hole entropy in unitary theories of gravity



We consider unitary and weakly coupled theories of gravity that extend Einstein gravity and reduce to it asymptotically at large distances. Our discussion is restricted to such theories that, similarly to Einstein gravity, contain black holes as semiclassical states in a range of scales. We show that, at a given scale, the entropy of these black holes has to be larger than the number of elementary light species in the theory. Our bound follows from the observation that the black hole entropy has to be larger than the product of its mass and horizon radius (in units of Planck’s constant divided by the speed of light) and the fact that, for any semiclassical black hole, this product has to be larger than the number of light species. For theories that obey our assumptions, the bound resolves the “species problem”: the tension between the geometric, species-independent nature of black hole entropy and the proportionality of ordinary thermodynamic entropy to the number of species. We then show that, when black holes in Einstein’s theory are compared to those in the extended theories at a fixed value of mass, the entropy of the Einstein black holes will always be minimal. Similar considerations are also applied to the entropy density of black branes in anti-de Sitter space.


Black Holes Models of Quantum Gravity Classical Theories of Gravity 


  1. [1]
    J.D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4 (1972) 737 [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    S.W. Hawking, Black hole explosions, Nature 248 (1974) 30 [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587 [gr-qc/9312023] [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    R. Brustein, D. Gorbonos and M. Hadad, Wald’s entropy is equal to a quarter of the horizon area in units of the effective gravitational coupling, Phys. Rev. D 79 (2009) 044025 [arXiv:0712.3206] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    T. Jacobson, Black hole entropy and induced gravity, gr-qc/9404039 [SPIRES].
  8. [8]
    T. Jacobson, Black hole entropy and induced gravity, published in Grossmann Meeting, (1994), pg. 39 [gr-qc/9404039] [SPIRES].
  9. [9]
    R. Brustein, G. Dvali and G. Veneziano, A bound on the effective gravitational coupling from semiclassical black holes, JHEP 10 (2009) 085 [arXiv:0907.5516] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    R. Ruffini and J.A. Wheeler, Introducing the black hole, Phys. Today 24 (1971) 30.CrossRefADSGoogle Scholar
  11. [11]
    G. Dvali, Black holes and large-N species solution to the hierarchy problem, arXiv:0706.2050 [SPIRES].
  12. [12]
    G. Dvali, Nature of microscopic black holes and gravity in theories with particle species, Int. J. Mod. Phys. A 25 (2010) 602 [arXiv:0806.3801] [SPIRES].ADSGoogle Scholar
  13. [13]
    G. Dvali and M. Redi, Black hole bound on the number of species and quantum gravity at LHC, Phys. Rev. D 77 (2008) 045027 [arXiv:0710.4344] [SPIRES].ADSGoogle Scholar
  14. [14]
    G. Dvali and M. Redi, Phenomenology of 1032 dark sectors, Phys. Rev. D 80 (2009) 055001 [arXiv:0905.1709] [SPIRES].ADSGoogle Scholar
  15. [15]
    G. Dvali and D. Lüst, Power of black hole physics: seeing through the vacuum landscape, JHEP 06 (2008) 047 [arXiv:0801.1287] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    G. Dvali and S.N. Solodukhin, Black hole entropy and gravity cutoff, arXiv:0806.3976 [SPIRES].
  17. [17]
    G. Dvali and C. Gomez, Quantum information and gravity cutoff in theories with species, Phys. Lett. B 674 (2009) 303 [arXiv:0812.1940] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    G. Dvali and C. Gomez, Strong coupling holography, arXiv:0907.3237 [SPIRES].
  19. [19]
    V.I. Zakharov, Linearized gravitation theory and the graviton mass, JETP Lett. 12 (1970) 312 [Pisma Zh. Eksp. Teor. Fiz. 12 (1970) 447] [SPIRES].ADSGoogle Scholar
  20. [20]
    H. van Dam and M.J.G. Veltman, Massive and massless Yang-Mills and gravitational fields, Nucl. Phys. B 22 (1970) 397 [SPIRES].ADSGoogle Scholar
  21. [21]
    G. Dvali, Predictive power of strong coupling in theories with large distance modified gravity, New J. Phys. 8 (2006) 326 [hep-th/0610013] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    G. Dvali, O. Pujolàs and M. Redi, Non Pauli-Fierz massive gravitons, Phys. Rev. Lett. 101 (2008) 171303 [arXiv:0806.3762] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    M. Srednicki, Quantum field theory. I: spin zero, hep-th/0409035 [SPIRES].
  24. [24]
    R. Brustein and A.J.M. Medved, The ratio of shear viscosity to entropy density in generalized theories of gravity, Phys. Rev. D 79 (2009) 021901 [arXiv:0808.3498] [SPIRES].ADSGoogle Scholar
  25. [25]
    R. Brustein and A.J.M. Medved, Proof of a universal lower bound on the shear viscosity to entropy density ratio, arXiv:0908.1473 [SPIRES].
  26. [26]
    J.D. Barrow and S. Cotsakis, Inflation and the conformal structure of higher order gravity theories, Phys. Lett. B 214 (1988) 515 [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  29. [29]
    D. Lovelock, The four-dimensionality of space and the Einstein tensor, J. Math. Phys. 13 (1972) 874 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  30. [30]
    B. Zwiebach, Curvature squared terms and string theories, Phys. Lett. B 156 (1985) 315 [SPIRES].ADSGoogle Scholar
  31. [31]
    R.C. Myers, Higher derivative gravity, surface terms and string theory, Phys. Rev. D 36 (1987) 392 [SPIRES].ADSGoogle Scholar
  32. [32]
    T. Jacobson and R.C. Myers, Black hole entropy and higher curvature interactions, Phys. Rev. Lett. 70 (1993) 3684 [hep-th/9305016] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  33. [33]
    M. Visser, Dirty black holes: entropy as a surface term, Phys. Rev. D 48 (1993) 5697 [hep-th/9307194] [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    D.T. Son and A.O. Starinets, Viscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    R.-G. Cai, Z.-Y. Nie and Y.-W. Sun, Shear viscosity from effective couplings of gravitons, Phys. Rev. D 78 (2008) 126007 [arXiv:0811.1665] [SPIRES].ADSGoogle Scholar
  38. [38]
    G. Dvali and C. Gomez, Species and strings, arXiv:1004.3744 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Department of PhysicsBen-Gurion UniversityBeer-ShevaIsrael
  2. 2.Physics DepartmentUniversity of SeoulSeoulKorea

Personalised recommendations