Advertisement

Transport coefficients from extremal Gauss-Bonnet black holes

  • Rong-Gen Cai
  • Yan Liu
  • Ya-Wen Sun
Article

Abstract

We calculate the shear viscosity of strongly coupled field theories dual to Gauss-Bonnet gravity at zero temperature with nonzero chemical potential. We find that the ratio of the shear viscosity over the entropy density is 1/4π, which is in accordance with the zero temperature limit of the ratio at nonzero temperatures. We also calculate the DC conductivity for this system at zero temperature and find that the real part of the DC conductivity vanishes up to a delta function, which is similar to the result in Einstein gravity. We show that at zero temperature, we can still have the conclusion that the shear viscosity is fully determined by the effective coupling of transverse gravitons in a kind of theories that the effective action of transverse gravitons can be written into a form of minimally coupled scalars with a deformed effective coupling.

Keywords

Gauge-gravity correspondence Black Holes 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MATHMathSciNetADSGoogle Scholar
  2. [2]
    G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. II: Sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev. Lett. 93 (2004) 090602 [hep-th/0311175] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    J. Mas, Shear viscosity from R-charged AdS black holes, JHEP 03 (2006) 016 [hep-th/0601144] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    D.T. Son and A.O. Starinets, Hydrodynamics of R-charged black holes, JHEP 03 (2006) 052 [hep-th/0601157] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    O. Saremi, The viscosity bound conjecture and hydrodynamics of M2-brane theory at finite chemical potential, JHEP 10 (2006) 083 [hep-th/0601159] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    K. Maeda, M. Natsuume and T. Okamura, Viscosity of gauge theory plasma with a chemical potential from AdS/CFT, Phys. Rev. D 73 (2006) 066013 [hep-th/0602010] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    R.-G. Cai and Y.-W. Sun, Shear Viscosity from AdS Born-Infeld Black Holes, JHEP 09 (2008) 115 [arXiv:0807.2377] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    H.S. Tan, Born-Infeld Hydrodynamics via Gauge/Gravity Duality, JHEP 04 (2009) 131 [arXiv:0903.3424] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    P. Benincasa and A. Buchel, Transport properties of N = 4 supersymmetric Yang-Mills theory at finite coupling, JHEP 01 (2006) 103 [hep-th/0510041] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    A. Buchel, Shear viscosity of boost invariant plasma at finite coupling, Nucl. Phys. B 802 (2008) 281 [arXiv:0801.4421] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    A. Buchel, Shear viscosity of CFT plasma at finite coupling, Phys. Lett. B 665 (2008) 298 [arXiv:0804.3161] [SPIRES].ADSGoogle Scholar
  16. [16]
    A. Buchel, Resolving disagreement for η/s in a CFT plasma at finite coupling, Nucl. Phys. B 803 (2008) 166 [arXiv:0805.2683] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to η/s, Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [SPIRES].ADSGoogle Scholar
  18. [18]
    A. Buchel, R.C. Myers, M.F. Paulos and A. Sinha, Universal holographic hydrodynamics at finite coupling, Phys. Lett. B 669 (2008) 364 [arXiv:0808.1837] [SPIRES].ADSGoogle Scholar
  19. [19]
    P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    A. Buchel, On universality of stress-energy tensor correlation functions in supergravity, Phys. Lett. B 609 (2005) 392 [hep-th/0408095] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    T.D. Cohen, Is there a “most perfect fluid” consistent with quantum field theory?, Phys. Rev. Lett. 99 (2007) 021602 [hep-th/0702136] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    D.T. Son and A.O. Starinets, Viscosity, Black Holes and Quantum Field Theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    A. Cherman, T.D. Cohen and P.M. Hohler, A sticky business: the status of the cojectured viscosity/entropy density bound, JHEP 02 (2008) 026 [arXiv:0708.4201] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    J.-W. Chen, M. Huang, Y.-H. Li, E. Nakano and D.-L. Yang, Phase Transitions and the Perfectness of Fluids, Phys. Lett. B 670 (2008) 18 [arXiv:0709.3434] [SPIRES].ADSGoogle Scholar
  26. [26]
    D.T. Son, Comment on “Is There a ‘Most Perfect Fluid’ Consistent with Quantum Field Theory?”, Phys. Rev. Lett. 100 (2008) 029101 [arXiv:0709.4651] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    I. Fouxon, G. Betschart and J.D. Bekenstein, The bound on viscosity and the generalized second law of thermodynamics, Phys. Rev. D 77 (2008) 024016 [arXiv:0710.1429] [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    A. Dobado, F.J. Llanes-Estrada and J.M.T. Rincon, The status of the KSS bound and its possible violations (How perfect can a fluid be?), AIP Conf. Proc. 1031 (2008) 221 [arXiv:0804.2601] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    K. Landsteiner and J. Mas, The shear viscosity of the non-commutative plasma, JHEP 07 (2007) 088 [arXiv:0706.0411] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in Higher Derivative Gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].ADSGoogle Scholar
  32. [32]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The Viscosity Bound and Causality Violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    R. Brustein and A.J.M. Medved, The ratio of shear viscosity to entropy density in generalized theories of gravity, Phys. Rev. D 79 (2009) 021901 [arXiv:0808.3498] [SPIRES].ADSGoogle Scholar
  34. [34]
    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].ADSGoogle Scholar
  35. [35]
    R.-G. Cai, Z.-Y. Nie and Y.-W. Sun, Shear Viscosity from Effective Couplings of Gravitons, Phys. Rev. D 78 (2008) 126007 [arXiv:0811.1665] [SPIRES].ADSGoogle Scholar
  36. [36]
    X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka, Viscosity Bound, Causality Violation and Instability with Stringy Correction and Charge, JHEP 10 (2008) 009 [arXiv:0808.2354] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  37. [37]
    I.P. Neupane and N. Dadhich, Higher Curvature Gravity: Entropy Bound and Causality Violation, arXiv:0808.1919 [SPIRES].
  38. [38]
    G. Koutsoumbas, E. Papantonopoulos and G. Siopsis, Shear Viscosity and Chern-Simons Diffusion Rate from Hyperbolic Horizons, Phys. Lett. B 677 (2009) 74 [arXiv:0809.3388] [SPIRES].MathSciNetADSGoogle Scholar
  39. [39]
    R. Brustein and A.J.M. Medved, The shear diffusion coefficient for generalized theories of gravity, Phys. Lett. B 671 (2009) 119 [arXiv:0810.2193] [SPIRES].MathSciNetADSGoogle Scholar
  40. [40]
    A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    R.-G. Cai, Z.-Y. Nie, N. Ohta and Y.-W. Sun, Shear Viscosity from Gauss-Bonnet Gravity with a Dilaton Coupling, Phys. Rev. D 79 (2009) 066004 [arXiv:0901.1421] [SPIRES].ADSGoogle Scholar
  42. [42]
    N. Banerjee and S. Dutta, Higher Derivative Corrections to Shear Viscosity from Graviton’s Effective Coupling, JHEP 03 (2009) 116 [arXiv:0901.3848] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    X.-H. Ge and S.-J. Sin, Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant, JHEP 05 (2009) 051 [arXiv:0903.2527] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    R.C. Myers, M.F. Paulos and A. Sinha, Holographic Hydrodynamics with a Chemical Potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    S. Cremonini, K. Hanaki, J.T. Liu and P. Szepietowski, Higher derivative effects on η/s at finite chemical potential, Phys. Rev. D 80 (2009) 025002 [arXiv:0903.3244] [SPIRES].ADSGoogle Scholar
  46. [46]
    N. Banerjee and S. Dutta, Shear Viscosity to Entropy Density Ratio in Six Derivative Gravity, JHEP 07 (2009) 024 [arXiv:0903.3925] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    X.-H. Ge, S.-J. Sin, S.-F. Wu and G.-H. Yang, Shear viscosity and instability from third order Lovelock gravity, Phys. Rev. D 80 (2009) 104019 [arXiv:0905.2675] [SPIRES].ADSGoogle Scholar
  48. [48]
    S.S. Pal, η/s at finite coupling, Phys. Rev. D 81 (2010) 045005 [arXiv:0910.0101] [SPIRES].ADSGoogle Scholar
  49. [49]
    M. Edalati, J.I. Jottar and R.G. Leigh, Transport Coefficients at Zero Temperature from Extremal Black Holes, JHEP 01 (2010) 018 [arXiv:0910.0645] [SPIRES].CrossRefGoogle Scholar
  50. [50]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality,Fermi surfaces and AdS2, arXiv:0907.2694 [SPIRES].
  51. [51]
    S.-J. Rey, String theory on thin semiconductors: Holographic realization ofFermi points and surfaces, Prog. Theor. Phys. Suppl. 177 (2009) 128 [arXiv:0911.5295] [SPIRES].MATHCrossRefADSGoogle Scholar
  52. [52]
    S.-S. Lee, A Non-Fermi Liquid from a Charged Black Hole: A CriticalFermi Ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [SPIRES].ADSGoogle Scholar
  53. [53]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].
  54. [54]
    M. Cubrovic, J. Zaanen and K. Schalm, String Theory, Quantum Phase Transitions and the Emergent Fermi-Liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  55. [55]
    R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [SPIRES].ADSGoogle Scholar
  56. [56]
    R.-G. Cai and Q. Guo, Gauss-Bonnet black holes in dS spaces, Phys. Rev. D 69 (2004) 104025 [hep-th/0311020] [SPIRES].MathSciNetADSGoogle Scholar
  57. [57]
    R.-G. Cai, A note on thermodynamics of black holes in Lovelock gravity, Phys. Lett. B 582 (2004) 237 [hep-th/0311240] [SPIRES].ADSGoogle Scholar
  58. [58]
    M. Cvetič, S. Nojiri and S.D. Odintsov, Black hole thermodynamics and negative entropy in deSitter and anti-deSitter Einstein-Gauss-Bonnet gravity, Nucl. Phys. B 628 (2002) 295 [hep-th/0112045] [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    D. Astefanesei, N. Banerjee and S. Dutta, (Un)attractor black holes in higher derivative AdS gravity, JHEP 11 (2008) 070 [arXiv:0806.1334] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  60. [60]
    D. Astefanesei, H. Nastase, H. Yavartanoo and S. Yun, Moduli flow and non-supersymmetric AdS attractors, JHEP 04 (2008) 074 [arXiv:0711.0036] [SPIRES].CrossRefMathSciNetGoogle Scholar
  61. [61]
    P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [SPIRES].ADSGoogle Scholar
  62. [62]
    C.P. Herzog and S.S. Pufu, The Second Sound of SU(2), JHEP 04 (2009) 126 [arXiv:0902.0409] [SPIRES].CrossRefADSGoogle Scholar
  63. [63]
    S.A. Hartnoll and C.P. Herzog, Ohm’s Law at strong coupling: S duality and the cyclotron resonance, Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228] [SPIRES].MathSciNetADSGoogle Scholar
  64. [64]
    M.F. Paulos, Transport coefficients, membrane couplings and universality at extremality, JHEP 02 (2010) 067 [arXiv:0910.4602] [SPIRES].CrossRefGoogle Scholar
  65. [65]
    S.K. Chakrabarti, S. Jain and S. Mukherji, Viscosity to entropy ratio at extremality, JHEP 01 (2010) 068 [arXiv:0910.5132] [SPIRES].CrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Department of PhysicsKinki UniversityHigashi-Osaka, OsakaJapan

Personalised recommendations