On the crossing relation in the presence of defects

  • V. B. Petkova


The OPE of local operators in the presence of defect lines is considered both in the rational CFT and the c > 25 Virasoro (Liouville) theory. The duality transformation of the 4-point function with inserted defect operators is explicitly computed. The two channels of the correlator reproduce the expectation values of the Wilson and ’t Hooft operators, recently discussed in Liouville theory in relation to the AGT conjecture.


Field Theories in Lower Dimensions Conformal and W Symmetry Boundary Quantum Field Theory 


  1. [1]
    V.B. Petkova and J.-B. Zuber, Generalised twisted partition functions, Phys. Lett. B 504 (2001) 157 [hep-th/0011021] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    V.B. Petkova and J.-B. Zuber, The many faces of Ocneanu cells, Nucl. Phys. B 603 (2001) 449 [hep-th/0101151] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    G.W. Moore and N. Seiberg, Classical and quantum conformal field theory, Commun. Math. Phys. 123 (1989) 177 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  4. [4]
    G.W. Moore and N. Seiberg, Lectures on RCFT, physics, geometry and topology, Plenum Press, New York U.S.A. (1990).Google Scholar
  5. [5]
    L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [SPIRES].CrossRefGoogle Scholar
  6. [6]
    N. Drukker, J. Gomis, T. Okuda and J. Teschner, Gauge theory loop operators and Liouville theory, JHEP 02 (2010) 057 [arXiv:0909.1105] [SPIRES].CrossRefGoogle Scholar
  7. [7]
    J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, Kramers-Wannier duality from conformal defects, Phys. Rev. Lett. 93 (2004) 070601 [cond-mat/0404051] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, Duality and defects in rational conformal field theory, Nucl. Phys. B 763 (2007) 354 [hep-th/0607247] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    I. Runkel, Perturbed defects and T-systems in conformal field theory, J. Phys. A 41 (2008) 105401 [arXiv:0711.0102] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    C. Bachas and M. Gaberdiel, Loop operators and the Kondo problem, JHEP 11 (2004) 065 [hep-th/0411067] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    A. Alekseev and S. Monnier, Quantization of Wilson loops in Wess-Zumino-Witten models, JHEP 08 (2007) 039 [hep-th/0702174] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    J. Gomis, Loops and defects in 4D gauge theories and 2D CFT’s, talk given at the Workshop on Interfaces and Wall-crossings, November 30–December 4, Munich, Germany (2009).Google Scholar
  13. [13]
    J.L. Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nucl. Phys. B 324 (1989) 581 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    R.E. Behrend, P.A. Pearce, V.B. Petkova and J.-B. Zuber, Boundary conditions in rational conformal field theories, Nucl. Phys. B 579 (2000) 707 [hep-th/9908036] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    A. Ocneanu, Paths on Coxeter diagrams: from platonic solids and singularities to minimal models and subfactors (Notes recorded by S. Goto), in Lectures on operator theory, eds. B.V. Rajarama Bhat et al., Fields Institute Monographs, AMS Publications (1999), pag. 243.Google Scholar
  16. [16]
    V.G. Kac, Laplace operators in modules of infinite-dimensional Lie algebras and theta functions, Proc. Natl. Acad. Sci. U.S.A. 81 (1984) 645.MATHCrossRefADSGoogle Scholar
  17. [17]
    B.L. Feigin and D.B. Fuks, Casimir operators in modules over Virasoro algebra, Sov. Math. Dokl. 27 (1983) 465.Google Scholar
  18. [18]
    E. Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys. B 300 (1988) 360.CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    A. Zamolodchikov and Al. Zamolodchikov, Liouville field theory on a pseudosphere, hep-th/0001012 [SPIRES].
  20. [20]
    V. Fateev, A. Zamolodchikov and Al. Zamolodchikov, Boundary Liouville field theory. I: boundary state and boundary two-point function, hep-th/0001012 [SPIRES].
  21. [21]
    G. Sarkissian, Defects and permutation branes in the Liouville field theory, Nucl. Phys. B 821 (2009) 607 [arXiv:0903.4422] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [SPIRES].MATHCrossRefADSGoogle Scholar
  23. [23]
    I. Runkel, Boundary structure constants for the A-series Virasoro minimal models, Nucl. Phys. B 549 (1999) 563 [hep-th/9811178] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    J.L. Cardy and D.C. Lewellen, Bulk and boundary operators in conformal field theory, Phys. Lett. B 259 (1991) 274 [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    D.C. Lewellen, Sewing constraints for conformal field theories on surfaces with boundaries, Nucl. Phys. B 372 (1992) 654 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    B. Ponsot and J. Teschner, Liouville bootstrap via harmonic analysis on a noncompact quantum group, hep-th/9911110 [SPIRES].
  27. [27]
    B. Ponsot and J. Teschner, Clebsch-Gordan and Racah-Wigner coefficients for a continuous series of representations of U q(sl(2, R)), Commun. Math. Phys. 224 (2001) 613 [math/0007097].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    B. Ponsot and J. Teschner, Boundary Liouville field theory: boundary three point function, Nucl. Phys. B 622 (2002) 309 [hep-th/0110244] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    P. Furlan, V.B. Petkova and M. Stanishkov, Non-critical string pentagon equations and their solutions, J. Phys. A 42 (2009) 304016 [arXiv:0805.0134] [SPIRES].MathSciNetGoogle Scholar
  30. [30]
    K. Hosomichi, Bulk-boundary propagator in Liouville theory on a disc, JHEP 11 (2001) 044 [hep-th/0108093] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    B. Ponsot, Remarks on the bulk-boundary structure constant in Liouville field theory, unpublished preliminary manuscript (private communication) (2005).Google Scholar
  32. [32]
    M. Nishizawa and K. Ueno, Integral solutions of q-difference equations of the hypergeometric type with |q| = 1, q-alg/9612014
  33. [33]
    V. Pasquier, Operator content of the ADE lattice models, J. Phys. A 20 (1987) 5707.MathSciNetADSGoogle Scholar
  34. [34]
    V.B. Petkova and J.-B. Zuber, On structure constants of sl(2) theories, Nucl. Phys. B 438 (1995) 347 [hep-th/9410209] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations