New horizons for black holes and branes

  • Roberto Emparan
  • Troels Harmark
  • Vasilis Niarchos
  • Niels A. Obers
Open Access


We initiate a systematic scan of the landscape of black holes in any spacetime dimension using the recently proposed blackfold effective worldvolume theory. We focus primarily on asymptotically flat stationary vacuum solutions, where we uncover large classes of new black holes. These include helical black strings and black rings, black odd-spheres, for which the horizon is a product of a large and a small sphere, and non-uniform black cylinders. More exotic possibilities are also outlined. The blackfold description recovers correctly the ultraspinning Myers-Perry black holes as ellipsoidal even-ball configurations where the velocity field approaches the speed of light at the boundary of the ball. Helical black ring solutions provide the first instance of asymptotically flat black holes in more than four dimensions with a single spatial U(1) isometry. They also imply infinite rational non-uniqueness in ultraspinning regimes, where they maximize the entropy among all stationary single-horizon solutions. Moreover, static blackfolds are possible with the geometry of minimal surfaces. The absence of compact embedded minimal surfaces in Euclidean space is consistent with the uniqueness theorem of static black holes.


p-branes Classical Theories of Gravity Black Holes 


  1. [1]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of Blackfold Dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [SPIRES].CrossRefGoogle Scholar
  3. [3]
    R. Emparan, T. Harmark, V. Niarchos, N.A. Obers and M.J. Rodriguez, The Phase Structure of Higher-Dimensional Black Rings and Black Holes, JHEP 10 (2007) 110 [arXiv:0708.2181] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    N.A. Obers, Black Holes in Higher-Dimensional Gravity, Lect. Notes Phys. 769 (2009) 211 [arXiv:0802.0519] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    V. Niarchos, Phases of Higher Dimensional Black Holes, Mod. Phys. Lett. A 23 (2008) 2625 [arXiv:0808.2776] [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    R. Emparan and H.S. Reall, Black Holes in Higher Dimensions, Living Rev. Rel. 11 (2008) 6 [arXiv:0801.3471] [SPIRES].Google Scholar
  7. [7]
    M.M. Caldarelli, R. Emparan and M.J. Rodriguez, Black Rings in (Anti)-deSitter space, JHEP 11 (2008) 011 [arXiv:0806.1954] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    J. Camps, R. Emparan, P. Figueras, S. Giusto and A. Saxena, Black Rings in Taub-NUT and D0-D6 interactions, JHEP 02 (2009) 021 [arXiv:0811.2088] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    J. Le Witt and S.F. Ross, Black holes and black strings in plane waves, JHEP 01 (2010) 101 [arXiv:0910.4332] [SPIRES].CrossRefGoogle Scholar
  10. [10]
    J.J. Blanco-Pillado, R. Emparan and A. Iglesias, Fundamental Plasmid Strings and Black Rings, JHEP 01 (2008) 014 [arXiv:0712.0611] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    S. Hollands, A. Ishibashi and R.M. Wald, A Higher Dimensional Stationary Rotating Black Hole Must be Axisymmetric, Commun. Math. Phys. 271 (2007) 699 [gr-qc/0605106] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  12. [12]
    V. Moncrief and J. Isenberg, Symmetries of Higher Dimensional Black Holes, Class. Quant. Grav. 25 (2008) 195015, [arXiv:0805.1451] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    H.S. Reall, Higher dimensional black holes and supersymmetry, Phys. Rev. D 68 (2003) 024024 [hep-th/0211290] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    H. Kudoh and T. Wiseman, Connecting black holes and black strings, Phys. Rev. Lett. 94 (2005) 161102 [hep-th/0409111] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    B. Kol, The Phase Transition between Caged Black Holes and Black Strings — A Review, Phys. Rept. 422 (2006) 119 [hep-th/0411240] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    T. Harmark, V. Niarchos and N.A. Obers, Instabilities of black strings and branes, Class. Quant. Grav. 24 (2007) R1 [hep-th/0701022] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  17. [17]
    T. Colding and W.P. Minicozzi, Minimal surfaces, Courant Lecture Notes in Mathematics, vol. 4, New York University, Courant Institute of Mathematical Sciences, New York (1999).Google Scholar
  18. [18]
    G.W. Gibbons, D. Ida and T. Shiromizu, Uniqueness and non-uniqueness of static vacuum black holes in higher dimensions, Prog. Theor. Phys. Suppl. 148 (2003) 284 [gr-qc/0203004] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    B. Carter, Essentials of classical brane dynamics, Int. J. Theor. Phys. 40 (2001) 2099 [gr-qc/0012036] [SPIRES].MATHCrossRefGoogle Scholar
  20. [20]
    D. Astefanesei, M.J. Rodriguez and S. Theisen, Quasilocal equilibrium condition for black ring, JHEP 12 (2009) 040 [arXiv:0909.0008] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    T. Harmark and N.A. Obers, General definition of gravitational tension, JHEP 05 (2004) 043 [hep-th/0403103] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    D. Kastor, S. Ray and J. Traschen, The First Law for Boosted Kaluza-Klein Black Holes, JHEP 06 (2007) 026 [arXiv:0704.0729] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    B. Carter, Stability and characteristic propagation speeds in superconducting cosmic and other string models, Phys. Lett. B 228 (1989) 466 [SPIRES].ADSGoogle Scholar
  24. [24]
    B. Carter, Brane dynamics for treatment of cosmic strings and vortons, hep-th/9705172 [SPIRES].
  25. [25]
    R. Emparan and R.C. Myers, Instability of ultra-spinning black holes, JHEP 09 (2003) 025 [hep-th/0308056] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    V. Cardoso and O.J.C. Dias, Gregory-Laflamme and Rayleigh-Plateau instabilities, Phys. Rev. Lett. 96 (2006) 181601 [hep-th/0602017] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    M.M. Caldarelli, O.J.C. Dias, R. Emparan and D. Klemm, Black Holes as Lumps of Fluid, JHEP 04 (2009) 024 [arXiv:0811.2381] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    B. Kol and M. Smolkin, Classical Effective Field Theory and Caged Black Holes, Phys. Rev. D 77 (2008) 064033 [arXiv:0712.2822] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    G.J. Galloway and R. Schoen, A generalization of Hawking’s black hole topology theorem to higher dimensions, Commun. Math. Phys. 266 (2006) 571 [gr-qc/0509107] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  30. [30]
    C. Helfgott, Y. Oz and Y. Yanay, On the topology of black hole event horizons in higher dimensions, JHEP 02 (2006) 025 [hep-th/0509013] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    S. Hollands and S. Yazadjiev, Uniqueness theorem for 5-dimensional black holes with two axial Killing fields, Commun. Math. Phys. 283 (2008) 749 [arXiv:0707.2775].MATHCrossRefMathSciNetADSGoogle Scholar
  32. [32]
    J. Evslin, Geometric Engineering 5D Black Holes with Rod Diagrams, JHEP 09 (2008) 004 [arXiv:0806.3389] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    Y. Chen and E. Teo, A rotating black lens solution in five dimensions, Phys. Rev. D 78 (2008) 064062 [arXiv:0808.0587] [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    T. Harmark, Domain Structure of Black Hole Space-Times, Phys. Rev. D80 (2009) 024019 [arXiv:0904.4246].MathSciNetADSGoogle Scholar
  35. [35]
    B. Kleihaus, J. Kunz, and E. Radu, d ≥ 5 static black holes with S 2 × S d−4 event horizon topology, Phys. Lett. B678 (2009) 301 [arXiv:0904.2723].MathSciNetADSGoogle Scholar
  36. [36]
    R. Emparan and H.S. Reall, A rotating black ring in five dimensions, Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260].CrossRefMathSciNetADSGoogle Scholar
  37. [37]
    H. Elvang and P. Figueras, Black saturn, JHEP 05 (2007) 050 [hep-th/0701035].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    H. Elvang, R. Emparan and P. Figueras, Phases of Five-Dimensional Black Holes, JHEP 05 (2007) 056 [hep-th/0702111] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    H. Iguchi and T. Mishima, Black di-ring and infinite nonuniqueness, Phys. Rev. D 75 (2007) 064018 [hep-th/0701043] [SPIRES].MathSciNetADSGoogle Scholar
  40. [40]
    J. Evslin and C. Krishnan, The Black Di-Ring: An Inverse Scattering Construction, Class. Quant. Grav. 26 (2009) 125018 [arXiv:0706.1231] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    H. Elvang and M.J. Rodriguez, Bicycling Black Rings, JHEP 04 (2008) 045 [arXiv:0712.2425] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  42. [42]
    K. Izumi, Orthogonal black di-ring solution, Prog. Theor. Phys. 119 (2008) 757 [arXiv:0712.0902] [SPIRES].MATHCrossRefADSGoogle Scholar
  43. [43]
    T. Harmark, Small black holes on cylinders, Phys. Rev. D 69 (2004) 104015 [hep-th/0310259] [SPIRES].MathSciNetADSGoogle Scholar
  44. [44]
    D. Gorbonos and B. Kol, A dialogue of multipoles: Matched asymptotic expansion for caged black holes, JHEP 06 (2004) 053 [hep-th/0406002] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    H. Elvang, R. Emparan and A. Virmani, Dynamics and stability of black rings, JHEP 12 (2006) 074 [hep-th/0608076] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  46. [46]
    O.J.C. Dias, P. Figueras, R. Monteiro, J.E. Santos and R. Emparan, Instability and new phases of higher-dimensional rotating black holes, Phys. Rev. D 80 (2009) 111701 [arXiv:0907.2248] [SPIRES].ADSGoogle Scholar
  47. [47]
    S.S. Gubser, On non-uniform black branes, Class. Quant. Grav. 19 (2002) 4825 [hep-th/0110193] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  48. [48]
    T. Wiseman, Static axisymmetric vacuum solutions and non-uniform black strings, Class. Quant. Grav. 20 (2003) 1137 [hep-th/0209051] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Roberto Emparan
    • 1
    • 2
  • Troels Harmark
    • 3
  • Vasilis Niarchos
    • 4
    • 5
  • Niels A. Obers
    • 6
  1. 1.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  2. 2.Departament de Física Fonamental and Institut de Ciències del CosmosUniversitat de BarcelonaBarcelonaSpain
  3. 3.NORDITAStockholmSweden
  4. 4.Centre de Physique ThéoriqueÉcole PolytechniquePalaiseauFrance
  5. 5.Unité mixte de Recherche 7644, CNRSParisFrance
  6. 6.The Niels Bohr InstituteCopenhagen ØDenmark

Personalised recommendations