Advertisement

Giant spinons

  • Keisuke Okamura
Article

Abstract

We study the spectrum around the “antiferromagnetic” states of the planar AdS5/CFT4 duality. In contrast to the familiar large-spin limit J → ∞ where each magnon momentum scales as p ∼ 1/J ≪ 1, we consider a novel “large-winding” limit in which the total momentum becomes infinitely large, Σ j p j → ∞. Upon taking the limit we identify “spinon” excitations of both gauge and string theories. In particular, a (classical) string spinon turns out to be an infinite set of spiky strings, which are closely related to well-known infinite-spin strings: giant magnons. Furthermore, we show that the curious agreement of scattering phase-shifts of two spikes and that of two giant magnons can be accounted for by regarding the spinon scattering as factorised scatterings of infinitely many magnons.

Keywords

AdS-CFT Correspondence Long strings Bethe Ansatz Integrable Field Theories 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MATHMathSciNetADSGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MATHMathSciNetGoogle Scholar
  4. [4]
    J.A. Minahan and K. Zarembo, The Bethe-ansatz for \( \mathcal{N} = 4 \) super Yang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS 5 × S 5 superstring, Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of \( \mathcal{N} = 4 \) super Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    N. Beisert and M. Staudacher, The \( \mathcal{N} = 4 \) SYM Integrable Super Spin Chain, Nucl. Phys. B 670 (2003) 439 [hep-th/0307042] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    V.A. Kazakov, A. Marshakov, J.A. Minahan and K. Zarembo, Classical / quantum integrability in AdS/CFT, JHEP 05 (2004) 024 [hep-th/0402207] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    N. Beisert, V. Dippel and M. Staudacher, A novel long range spin chain and planar \( \mathcal{N} = 4 \) super Yang- Mills, JHEP 07 (2004) 075 [hep-th/0405001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    M. Staudacher, The factorized S-matrix of CFT/AdS, JHEP 05 (2005) 054 [hep-th/0412188] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    G. Arutyunov, S. Frolov and M. Staudacher, Bethe ansatz for quantum strings, JHEP 10 (2004) 016 [hep-th/0406256] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    N. Beisert and M. Staudacher, Long-range \( \mathfrak{p}\mathfrak{s}\mathfrak{u}\left( {2,\,2\left| 4 \right.} \right) \) Bethe ansaetze for gauge theory and strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    N. Beisert, The su(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [SPIRES].MathSciNetGoogle Scholar
  14. [14]
    R.A. Janik, The AdS 5 × S 5 superstring worldsheet S-matrix and crossing symmetry, Phys. Rev. D 73 (2006) 086006 [hep-th/0603038] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    B. Eden and M. Staudacher, Integrability and transcendentality, J. Stat. Mech. (2006) P11014 [hep-th/0603157] [SPIRES].
  16. [16]
    G. Arutyunov and S. Frolov, On AdS 5 × S 5 string S-matrix, Phys. Lett. B 639 (2006) 378 [hep-th/0604043] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    N. Beisert, R. Hernandez and E. Lopez, A crossing-symmetric phase for AdS 5 × S 5 strings, JHEP 11 (2006) 070 [hep-th/0609044] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. (2007) P01021 [hep-th/0610251] [SPIRES].
  19. [19]
    G. Arutyunov, S. Frolov and M. Zamaklar, The Zamolodchikov-Faddeev algebra for AdS 5 × S 5 superstring, JHEP 04 (2007) 002 [hep-th/0612229] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    N. Dorey, D.M. Hofman and J.M. Maldacena, On the singularities of the magnon S-matrix, Phys. Rev. D 76 (2007) 025011 [hep-th/0703104] [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from \( \mathcal{N} = 4 \) super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    A. Rej, M. Staudacher and S. Zieme, Nesting and dressing, J. Stat. Mech. (2007) P08006 [hep-th/0702151] [SPIRES].
  23. [23]
    R.A. Janik and T. Lukowski, From nesting to dressing, Phys. Rev. D 78 (2008) 066018 [arXiv:0804.4295] [SPIRES].ADSGoogle Scholar
  24. [24]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, A semi-classical limit of the gauge/string correspondence, Nucl. Phys. B 636 (2002) 99 [hep-th/0204051] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    S. Frolov and A.A. Tseytlin, Multi-spin string solutions in AdS 5 × S 5, Nucl. Phys. B 668 (2003) 77 [hep-th/0304255] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    S. Frolov and A.A. Tseytlin, Quantizing three-spin string solution in AdS 5 × S 5, JHEP 07 (2003) 016 [hep-th/0306130] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    D.M. Hofman and J.M. Maldacena, Giant magnons, J. Phys. A 39 (2006) 13095 [hep-th/0604135] [SPIRES].MathSciNetGoogle Scholar
  28. [28]
    R. Ishizeki and M. Kruczenski, Single spike solutions for strings on S 2 and S 3, Phys. Rev. D 76 (2007) 126006 [arXiv:0705.2429] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    A.E. Mosaffa and B. Safarzadeh, Dual Spikes: New Spiky String Solutions, JHEP 08 (2007) 017 [arXiv:0705.3131] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    R. Roiban, A. Tirziu and A.A. Tseytlin, Slow-string limit and ’antiferromagnetic’ state in AdS/CFT, Phys. Rev. D 73 (2006) 066003 [hep-th/0601074] [SPIRES].MathSciNetADSGoogle Scholar
  31. [31]
    K. Zarembo, Antiferromagnetic operators in \( \mathcal{N} = 4 \) supersymmetric Yang- Mills theory, Phys. Lett. B 634 (2006) 552 [hep-th/0512079] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    A. Rej, D. Serban and M. Staudacher, Planar \( \mathcal{N} = 4 \) gauge theory and the Hubbard model, JHEP 03 (2006) 018 [hep-th/0512077] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    H. Hayashi, K. Okamura, R. Suzuki and B. Vicedo, Large Winding Sector of AdS/CFT, JHEP 11 (2007) 033 [arXiv:0709.4033] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    R. Ishizeki, M. Kruczenski, M. Spradlin and A. Volovich, Scattering of single spikes, JHEP 02 (2008) 009 [arXiv:0710.2300] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    M.C. Abbott and I.V. Aniceto, Vibrating giant spikes and the large-winding sector, JHEP 06 (2008) 088 [arXiv:0803.4222] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    C. Ahn and P. Bozhilov, Finite-size Effects for Single Spike, JHEP 07 (2008) 105 [arXiv:0806.1085] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    J.A. Minahan, A. Tirziu and A.A. Tseytlin, Infinite spin limit of semiclassical string states, JHEP 08 (2006) 049 [hep-th/0606145] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    K. Okamura and R. Suzuki, A perspective on classical strings from complex sine-Gordon solitons, Phys. Rev. D 75 (2007) 046001 [hep-th/0609026] [SPIRES].MathSciNetADSGoogle Scholar
  39. [39]
    N. Beisert, V.A. Kazakov, K. Sakai and K. Zarembo, Complete spectrum of long operators in \( \mathcal{N} = 4 \) SYM at one loop, JHEP 07 (2005) 030 [hep-th/0503200] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    M. Spradlin and A. Volovich, Dressing the giant magnon, JHEP 10 (2006) 012 [hep-th/0607009] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  42. [42]
    C. Kalousios, M. Spradlin and A. Volovich, Dressing the giant magnon. II, JHEP 03 (2007) 020 [hep-th/0611033] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  43. [43]
    H.-Y. Chen, N. Dorey and K. Okamura, On the scattering of magnon boundstates, JHEP 11 (2006) 035 [hep-th/0608047] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  44. [44]
    R. Roiban, Magnon bound-state scattering in gauge and string theory, JHEP 04 (2007) 048 [hep-th/0608049] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    N. Dorey, Magnon bound states and the AdS/CFT correspondence, J. Phys. A 39 (2006) 13119 [hep-th/0604175] [SPIRES].MathSciNetGoogle Scholar
  46. [46]
    H.-Y. Chen, N. Dorey and K. Okamura, Dyonic giant magnons, JHEP 09 (2006) 024 [hep-th/0605155] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  47. [47]
    H.-Y. Chen, N. Dorey and K. Okamura, The asymptotic spectrum of the \( \mathcal{N} = 4 \) super Yang-Mills spin chain, JHEP 03 (2007) 005 [hep-th/0610295] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  48. [48]
    G. Arutyunov, S. Frolov and M. Zamaklar, Finite-size effects from giant magnons, Nucl. Phys. B 778 (2007) 1 [hep-th/0606126] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  49. [49]
    G. Feverati, D. Fioravanti, P. Grinza and M. Rossi, On the finite size corrections of anti-ferromagnetic anomalous dimensions in \( \mathcal{N} = 4 \) SYM, JHEP 05 (2006) 068 [hep-th/0602189] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  50. [50]
    G. Feverati, D. Fioravanti, P. Grinza and M. Rossi, Hubbard’s adventures in \( \mathcal{N} = 4 \) SYM-land? Some non- perturbative considerations on finite length operators, J. Stat. Mech. (2007) P02001 [hep-th/0611186] [SPIRES].
  51. [51]
    D. Fioravanti and M. Rossi, On the commuting charges for the highest dimension SU(2) operator in planar \( \mathcal{N} = 4 \) SYM, JHEP 08 (2007) 089 [arXiv:0706.3936] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  52. [52]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N} = 6 \) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  53. [53]
    J.A. Minahan and K. Zarembo, The Bethe ansatz for superconformal Chern-Simons, JHEP 09 (2008) 040 [arXiv:0806.3951] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  54. [54]
    N. Gromov and P. Vieira, The all loop AdS 4 /CFT 3 Bethe ansatz, JHEP 01 (2009) 016 [arXiv:0807.0777] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  55. [55]
    N. Gromov and P. Vieira, The AdS 4 /CFT 3 algebraic curve, JHEP 02 (2009) 040 [arXiv:0807.0437] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  56. [56]
    D. Astolfi, V.G.M. Puletti, G. Grignani, T. Harmark and M. Orselli, Finite-size corrections in the SU(2) × SU(2) sector of type IIA string theory on \( {\text{Ad}}{{\text{S}}_4} \times \mathbb{C}{\mathbb{P}^3} \), Nucl. Phys. B 810 (2009) 150 [arXiv:0807.1527] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  57. [57]
    C. Ahn and R.I. Nepomechie, N=6 super Chern-Simons theory S-matrix and all-loop Bethe ansatz equations, JHEP 09 (2008) 010 [arXiv:0807.1924] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  58. [58]
    D. Bak and S.-J. Rey, Integrable Spin Chain in Superconformal Chern-Simons Theory, JHEP 10 (2008) 053 [arXiv:0807.2063] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  59. [59]
    T. McLoughlin and R. Roiban, Spinning strings at one-loop in \( {\text{Ad}}{{\text{S}}_4} \times {\mathbb{P}^3} \), JHEP 12 (2008) 101 [arXiv:0807.3965] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  60. [60]
    T. McLoughlin, R. Roiban and A.A. Tseytlin, Quantum spinning strings in \( {\text{Ad}}{{\text{S}}_4} \times \mathbb{C}{\mathbb{P}^3} \) : testing the Bethe Ansatz proposal, JHEP 11 (2008) 069 [arXiv:0809.4038] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  61. [61]
    L.F. Alday, G. Arutyunov and D. Bykov, Semiclassical Quantization of Spinning Strings in \( {\text{Ad}}{{\text{S}}_4} \times \mathbb{C}{\mathbb{P}^3} \), JHEP 11 (2008) 089 [arXiv:0807.4400] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  62. [62]
    C. Krishnan, AdS 4 /CFT 3 at One Loop, JHEP 09 (2008) 092 [arXiv:0807.4561] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  63. [63]
    N. Gromov and V. Mikhaylov, Comment on the Scaling Function in \( {\text{Ad}}{{\text{S}}_4} \times \mathbb{C}{\mathbb{P}^3} \), JHEP 04 (2009) 083 [arXiv:0807.4897] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  64. [64]
    M.C. Abbott and I. Aniceto, Giant Magnons in \( {\text{Ad}}{{\text{S}}_4} \times \mathbb{C}{\mathbb{P}^3} \) : Embeddings, Charges and a Hamiltonian, JHEP 04 (2009) 136 [arXiv:0811.2423] [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    I. Shenderovich, Giant magnons in AdS4/CFT3 : dispersion, quantization and finite–size corrections, arXiv:0807.2861 [SPIRES].
  66. [66]
    C. Ahn, P. Bozhilov and R.C. Rashkov, Neumann-Rosochatius integrable system for strings on \( {\text{Ad}}{{\text{S}}_4} \times \mathbb{C}{\mathbb{P}^3} \), JHEP 09 (2008) 017 [arXiv:0807.3134] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  67. [67]
    C. Ahn and P. Bozhilov, Finite-size Effect of the Dyonic Giant Magnons in \( \mathcal{N}{ = 6} \) super Chern-Simons Theory, Phys. Rev. D 79 (2009) 046008 [arXiv:0810.2079] [SPIRES].ADSGoogle Scholar
  68. [68]
    M.C. Abbott, I. Aniceto and O.O. Sax, Dyonic Giant Magnons in \( \mathbb{C}{\mathbb{P}^3} \) : Strings and Curves at Finite J, Phys. Rev. D 80 (2009) 026005 [arXiv:0903.3365] [SPIRES].MathSciNetADSGoogle Scholar
  69. [69]
    D. Bombardelli and D. Fioravanti, Finite-Size Corrections of the \( \mathbb{C}{\mathbb{P}^3} \) Giant Magnons: the Lúscher terms, JHEP 07 (2009) 034 [arXiv:0810.0704] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  70. [70]
    T. Lukowski and O.O. Sax, Finite size giant magnons in the SU(2) × SU(2) sector of \( {\text{Ad}}{{\text{S}}_4} \times \mathbb{C}{\mathbb{P}^3} \), JHEP 12 (2008) 073 [arXiv:0810.1246] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  71. [71]
    G. Grignani, T. Harmark and M. Orselli, The SU(2) × SU(2) sector in the string dual of \( \mathcal{N}{ = 6} \) superconformal Chern-Simons theory, Nucl. Phys. B 810 (2009) 115 [arXiv:0806.4959] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  72. [72]
    G. Grignani, T. Harmark, M. Orselli and G.W. Semenoff, Finite size Giant Magnons in the string dual of \( \mathcal{N}{ = 6} \) superconformal Chern-Simons theory, JHEP 12 (2008) 008 [arXiv:0807.0205] [SPIRES].MathSciNetGoogle Scholar
  73. [73]
    B.-H. Lee, K.L. Panigrahi and C. Park, Spiky Strings on \( Ad{S_4} \times \mathbb{C}{\mathbb{P}^3} \), JHEP 11 (2008) 066 [arXiv:0807.2559] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  74. [74]
    T.J. Hollowood and J.L. Miramontes, Magnons, their Solitonic Avatars and the Pohlmeyer Reduction, JHEP 04 (2009) 060 [arXiv:0902.2405] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  75. [75]
    R. Suzuki, Giant Magnons on \( \mathbb{C}{\mathbb{P}^3} \) by Dressing Method, JHEP 05 (2009) 079 [arXiv:0902.3368] [SPIRES].CrossRefADSGoogle Scholar
  76. [76]
    C. Kalousios, M. Spradlin and A. Volovich, Dyonic Giant Magnons on \( \mathbb{C}{\mathbb{P}^3} \), JHEP 07 (2009) 006 [arXiv:0902.3179] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Ministry of Education, Culture, SportsScience and Technology –JapanTokyoJapan

Personalised recommendations