Relating chronology protection and unitarity through holography

  • Joris Raeymaekers
  • Dieter Van den Bleeken
  • Bert Vercnocke


We give a simple nonsupersymmetric example in which chronology protection follows from unitarity and the AdS/CFT correspondence. We consider a ball of homogeneous, rotating dust in global AdS3 whose backreaction produces a region of Gödel space inside the ball. We solve the Israel matching conditions to find the geometry outside of the dust ball and compute its quantum numbers in the dual CFT. When the radius of the dust ball exceeds a certain critical value, the spacetime will contain closed timelike curves. Our main observation is that precisely when this critical radius is exceeded, a unitarity bound in the dual CFT is violated, leading to a holographic argument for chronology protection.


AdS-CFT Correspondence Models of Quantum Gravity Classical Theories of Gravity 


  1. [1]
    K. Godel, An Example of a new type of cosmological solutions of Einstein’s field equations of graviation, Rev. Mod. Phys. 21 (1949) 447 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  3. [3]
    D. Israel, Quantization of heterotic strings in a Goedel/anti de Sitter spacetime and chronology protection, JHEP 01 (2004) 042 [hep-th/0310158] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    T.S. Levi, J. Raeymaekers, D. Van den Bleeken, W. Van Herck and B. Vercnocke, Godel space from wrapped M2-branes, arXiv:0909.4081 [SPIRES].
  5. [5]
    J.L. Friedman and A. Higuchi, Topological censorship and chronology protection, Annalen Phys. 15 (2006) 109 [arXiv:0801.0735] [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  6. [6]
    S.W. Hawking, The Chronology Protection Conjecture, Phys. Rev. D 46 (1992) 603 [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    B.S. Kay, M.J. Radzikowski and R.M. Wald, Quantum field theory on spacetimes with a compactly generated Cauchy horizon, Commun. Math. Phys. 183 (1997) 533 [gr-qc/9603012] [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  8. [8]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MathSciNetADSMATHGoogle Scholar
  9. [9]
    C.A.R. Herdeiro, Special properties of five dimensional BPS rotating black holes, Nucl. Phys. B 582 (2000) 363 [hep-th/0003063] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    M.M. Caldarelli, D. Klemm and P.J. Silva, Chronology protection in anti-de Sitter, Class. Quant. Grav. 22 (2005) 3461 [hep-th/0411203] [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  11. [11]
    M.M. Caldarelli, D. Klemm and W.A. Sabra, Causality violation and naked time machines in AdS 5, JHEP 05 (2001) 014 [hep-th/0103133] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  13. [13]
    A. Strominger, Black hole entropy from near-horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    S.F. Ross and R.B. Mann, Gravitationally collapsing dust in (2+1)-dimensions, Phys. Rev. D 47 (1993) 3319 [hep-th/9208036] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    C. Vaz and K.R. Koehler, A Rotating, Inhomogeneous Dust Interior for the BTZ Black Hole, Phys. Rev. D 78 (2008) 024038 [arXiv:0805.1908] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  17. [17]
    W.B. Bonnor, N.O. Santos and M.A.H. MacCallum, An exterior for the Gödel spacetime, Class. Quant. Grav. 15 (1998) 357 [gr-qc/9711011] [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  18. [18]
    M. Lubo, M. Rooman and P. Spindel, (2+1) dimensional stars, Phys. Rev. D 59 (1999) 044012 [gr-qc/9806104] [SPIRES].MathSciNetADSGoogle Scholar
  19. [19]
    M. Rooman and P. Spindel, Goedel metric as a squashed anti-de Sitter geometry, Class. Quant. Grav. 15 (1998) 3241 [gr-qc/9804027] [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  20. [20]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2+1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [SPIRES].ADSGoogle Scholar
  21. [21]
    V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  22. [22]
    W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cim. B 44S10 (1966) 1 [Erratum-ibid. B 48 (1967 NUCIA,B44,1.1966) 463] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    L. Dyson, Chronology protection in string theory, JHEP 03 (2004) 024 [hep-th/0302052] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    N. Drukker, B. Fiol and J. Simon, Goedel’s universe in a supertube shroud, Phys. Rev. Lett. 1 (2003) 231601 [hep-th/0306057] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    e.g. Gimon and P. Hořava, Over-rotating black holes, Goedel holography and the hypertube, hep-th/0405019 [SPIRES].
  26. [26]
    M.S. Costa, C.A.R. Herdeiro, J. Penedones and N. Sousa, Hagedorn transition and chronology protection in string theory, Nucl. Phys. B 728 (2005) 148 [hep-th/0504102] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Joris Raeymaekers
    • 1
  • Dieter Van den Bleeken
    • 2
  • Bert Vercnocke
    • 3
  1. 1.Institute of Physics of the ASCR, v.v.i.Prague 8Czech Republic
  2. 2.NHETC and Dept. of Physics and AstronomyRutgers UniversityPiscatawayU.S.A.
  3. 3.Instituut voor Theoretische Fysica, KU LeuvenLeuvenBelgium

Personalised recommendations