Skip to main content
Log in

Exploring Drell-Yan signals from the 4D Composite Higgs Model at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the phenomenology of Drell-Yan processes at the Large Hadron Collider for the case of both the neutral and charged current channels within a recently proposed 4-Dimensional formulation of the Minimal Composite Higgs Model. We estimate the integrated and differential event rates at the CERN machine, assuming 14 TeV and data samples of \( \mathcal{O} \)(100 fb−1), as at lower energy and/or luminosity event rates are prohibitively small. We pay particular attention to the presence of multiple resonances in either channel, by showing that in certain region of parameter space some of these can be distinguishable and experimentally accessible in the invariant and/or transverse mass distribution, sampled in either the cross section, the forward-backward asymmetry or both. At the same time, we assess the indirect impact onto the line-shape of the emerging gauge boson resonances, both neutral and charged, of additional heavy fermionic states present in the spectrum of the model. Finally, we show how to exploit in the kinematic selection the fact that the extra neutral and charged gauge boson resonances in composite Higgs models are correlated in mass. Such results rely on a parton level study including a statistical error analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Campbell, J. Huston and W. Stirling, Hard interactions of quarks and gluons: a primer for LHC physics, Rept. Prog. Phys. 70 (2007) 89 [hep-ph/0611148] [INSPIRE].

    Article  ADS  Google Scholar 

  2. G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The minimal set of electroweak precision parameters, Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111] [INSPIRE].

    ADS  Google Scholar 

  3. P. Langacker, The physics of heavy Z gauge bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].

    Article  ADS  Google Scholar 

  4. E. Salvioni, G. Villadoro and F. Zwirner, Minimal Z models: present bounds and early LHC reach, JHEP 11 (2009) 068 [arXiv:0909.1320] [INSPIRE].

    Article  ADS  Google Scholar 

  5. E. Accomando, A. Belyaev, L. Fedeli, S.F. King and C. Shepherd-Themistocleous, Z physics with early LHC data, Phys. Rev. D 83 (2011) 075012 [arXiv:1010.6058] [INSPIRE].

    ADS  Google Scholar 

  6. L. Basso, S. Moretti and G.M. Pruna, Theoretical constraints on the couplings of non-exotic minimal Z bosons, JHEP 08 (2011) 122 [arXiv:1106.4762] [INSPIRE].

    Article  ADS  Google Scholar 

  7. P. Athron, S. King, D. Miller, S. Moretti and R. Nevzorov, LHC signatures of the constrained exceptional supersymmetric standard model, Phys. Rev. D 84 (2011) 055006 [arXiv:1102.4363] [INSPIRE].

    ADS  Google Scholar 

  8. P. Athron, S. King, D. Miller, S. Moretti and R. Nevzorov, Constrained exceptional supersymmetric standard model with a Higgs near 125 GeV, Phys. Rev. D 86 (2012) 095003 [arXiv:1206.5028] [INSPIRE].

    ADS  Google Scholar 

  9. P. Athron, D. Stöckinger and A. Voigt, Threshold corrections in the exceptional supersymmetric standard model, Phys. Rev. D 86 (2012) 095012 [arXiv:1209.1470] [INSPIRE].

    ADS  Google Scholar 

  10. L. Basso, B. O’Leary, W. Porod and F. Staub, Dark matter scenarios in the minimal SUSY BL model, JHEP 09 (2012) 054[arXiv:1207.0507] [INSPIRE].

    Article  ADS  Google Scholar 

  11. B. O’Leary, W. Porod and F. Staub, Mass spectrum of the minimal SUSY BL model, JHEP 05 (2012) 042 [arXiv:1112.4600] [INSPIRE].

    Article  Google Scholar 

  12. M. Hirsch, W. Porod, L. Reichert and F. Staub, Phenomenology of the minimal supersymmetric U(1) B−L × U(1) R extension of the standard model, Phys. Rev. D 86 (2012) 093018 [arXiv:1206.3516] [INSPIRE].

    ADS  Google Scholar 

  13. M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M. Perelstein, Little Higgs models and their phenomenology, Prog. Part. Nucl. Phys. 58 (2007) 247 [hep-ph/0512128] [INSPIRE].

    Article  ADS  Google Scholar 

  15. H.-C. Cheng, Little Higgs, non-standard Higgs, no Higgs and all that, arXiv:0710.3407 [INSPIRE].

  16. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudoGoldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].

    Article  ADS  Google Scholar 

  17. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    Article  ADS  Google Scholar 

  18. R. Contino, The Higgs as a composite Nambu-Goldstone boson, arXiv:1005.4269 [INSPIRE].

  19. S. De Curtis, M. Redi and A. Tesi, The 4D composite Higgs, JHEP 04 (2012) 042 [arXiv:1110.1613] [INSPIRE].

    Article  Google Scholar 

  20. D.B. Kaplan and H. Georgi, SU(2) × U (1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].

    Article  ADS  Google Scholar 

  21. H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys. Lett. B 143 (1984) 152 [INSPIRE].

    Article  ADS  Google Scholar 

  22. H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].

    Article  ADS  Google Scholar 

  23. M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].

    Article  ADS  Google Scholar 

  24. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  25. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  26. K. Agashe et al., LHC signals for warped electroweak neutral gauge bosons, Phys. Rev. D 76 (2007) 115015 [arXiv:0709.0007] [INSPIRE].

    ADS  Google Scholar 

  27. K. Agashe, S. Gopalakrishna, T. Han, G.-Y. Huang and A. Soni, LHC signals for warped electroweak charged gauge bosons, Phys. Rev. D 80 (2009) 075007 [arXiv:0810.1497] [INSPIRE].

    ADS  Google Scholar 

  28. G. Panico and A. Wulzer, The discrete composite Higgs model, JHEP 09 (2011) 135 [arXiv:1106.2719] [INSPIRE].

    Article  ADS  Google Scholar 

  29. R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].

    Article  ADS  Google Scholar 

  30. R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].

  31. M. Redi and A. Tesi, Implications of a light Higgs in composite models, JHEP 10 (2012) 166 [arXiv:1205.0232] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Semenov, LanHEPa package for automatic generation of Feynman rules from the Lagrangian. Updated version 3.1, arXiv:1005.1909 [INSPIRE].

  33. A. Pukhov et al., CompHEP: a package for evaluation of Feynman diagrams and integration over multiparticle phase space, hep-ph/9908288 [INSPIRE].

  34. A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the standard model, arXiv:1207.6082 [INSPIRE].

  35. G. Bélanger, N.D. Christensen, A. Pukhov and A. Semenov, SLHAplus: a library for implementing extensions of the standard model, Comput. Phys. Commun. 182 (2011) 763 [arXiv:1008.0181] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  36. G. Brooijmans et al., Les Houches 2011: physics at TeV colliders New Physics Working Group report, arXiv:1203.1488 [INSPIRE].

  37. Wolfram Research Inc., Mathematica Edition: version 7.0, Champaign U.S.A. (2008).

  38. CDF and D0 collaborations, T. Aaltonen et al., Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron, Phys. Rev. Lett. 109 (2012) 071804 [arXiv:1207.6436] [INSPIRE].

  39. H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity Amplitude Subroutines for Feynman diagram evaluations, KEK-91-11 [INSPIRE].

  40. T. Stelzer and W. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [INSPIRE].

    Article  ADS  Google Scholar 

  41. H. Kharraziha and S. Moretti, The Metropolis algorithm for on-shell four momentum phase space, Comput. Phys. Commun. 127 (2000) 242 [Erratum ibid. 134 (2001) 136] [hep-ph/9909313] [INSPIRE].

  42. R. Kleiss, W.J. Stirling and S. Ellis, A new Monte Carlo treatment of multiparticle phase space at high-energies, Comput. Phys. Commun. 40 (1986) 359 [INSPIRE].

    Article  ADS  Google Scholar 

  43. G.P. Lepage, A new algorithm for adaptive multidimensional integration, J. Comput. Phys. 27 (1978) 192 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. G.P. Lepage, VEGAS: an adaptive multidimensional integration program, CLNS-80/447 [INSPIRE].

  45. N.E. Adam, V. Halyo, S.A. Yost and W. Zhu, Evaluation of the theoretical uncertainties in the Wℓν cross sections at the LHC, JHEP 09 (2008) 133 [arXiv:0808.0758] [INSPIRE].

    Article  ADS  Google Scholar 

  46. N.E. Adam, V. Halyo and S.A. Yost, Evaluation of the theoretical uncertainties in the Z + cross sections at the LHC, JHEP 05 (2008) 062 [arXiv:0802.3251] [INSPIRE].

    Article  Google Scholar 

  47. G. Balossini et al., Standard model precision tests at hadron colliders: theoretical control on Drell-Yan processes, Acta Phys. Polon. B 38 (2007) 3407 [INSPIRE].

    ADS  Google Scholar 

  48. G. Balossini et al., Combination of electroweak and QCD corrections to single W production at the Fermilab Tevatron and the CERN LHC, JHEP 01 (2010) 013 [arXiv:0907.0276] [INSPIRE].

    Article  ADS  Google Scholar 

  49. CTEQ collaboration, H. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12 (2000) 375 [hep-ph/9903282] [INSPIRE].

    Article  ADS  Google Scholar 

  50. NNPDF collaboration, R.D. Ball et al., Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO, Nucl. Phys. B 855 (2012) 153 [arXiv:1107.2652] [INSPIRE].

    Article  ADS  Google Scholar 

  51. ATLAS collaboration, Search for high-mass states with one lepton plus missing transverse momentum in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 701 (2011) 50 [arXiv:1103.1391] [INSPIRE].

    ADS  Google Scholar 

  52. CMS collaboration, Search for leptonic decays of W bosons in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 08 (2012) 023 [arXiv:1204.4764] [INSPIRE].

    ADS  Google Scholar 

  53. ATLAS collaboration, A search for heavy resonances in the dilepton channel, EPJ Web Conf. 28 (2012) 12003 [arXiv:1201.4721] [INSPIRE].

    Article  Google Scholar 

  54. CMS collaboration, Search for narrow resonances in dilepton mass spectra in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 714 (2012) 158 [arXiv:1206.1849] [INSPIRE].

    ADS  Google Scholar 

  55. CMS collaboration, Search for heavy bottom-like fourth generation quark pair at CMS in pp collisions at \( \sqrt{s}=14 \) TeV, CMS-PAS-EXO-08-009 (2009) [INSPIRE].

  56. CMS collaboration, Search for a fourth generation b quark in tW final state at CMS in pp collisions at \( \sqrt{s}=10 \) TeV, CMS-PAS-EXO-09-012 (2009) [INSPIRE].

  57. ATLAS collaboration, Search for same-sign top-quark production and fourth-generation down-type quarks in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 04 (2012) 069 [arXiv:1202.5520] [INSPIRE].

    ADS  Google Scholar 

  58. ATLAS collaboration, Search for down-type fourth generation quarks with the ATLAS detector in events with one lepton and hadronically decaying W bosons, Phys. Rev. Lett. 109 (2012) 032001 [arXiv:1202.6540] [INSPIRE].

    Article  ADS  Google Scholar 

  59. D. Marzocca, M. Serone and J. Shu, General composite Higgs models, JHEP 08 (2012) 013 [arXiv:1205.0770] [INSPIRE].

    Article  ADS  Google Scholar 

  60. O. Matsedonskyi, G. Panico and A. Wulzer, Light top partners for a light composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].

    Article  ADS  Google Scholar 

  61. F. Gianotti et al., Physics potential and experimental challenges of the LHC luminosity upgrade, Eur. Phys. J. C 39 (2005) 293 [hep-ph/0204087] [INSPIRE].

    Article  ADS  Google Scholar 

  62. U. Baur, O. Brein, W. Hollik, C. Schappacher and D. Wackeroth, Electroweak radiative corrections to neutral current Drell-Yan processes at hadron colliders, Phys. Rev. D 65 (2002) 033007 [hep-ph/0108274] [INSPIRE].

    ADS  Google Scholar 

  63. J.C. Collins and D.E. Soper, Angular distribution of dileptons in high-energy hadron collisions, Phys. Rev. D 16 (1977) 2219 [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Barducci.

Additional information

ArXiv ePrint: 1210.2927

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barducci, D., Belyaev, A., De Curtis, S. et al. Exploring Drell-Yan signals from the 4D Composite Higgs Model at the LHC. J. High Energ. Phys. 2013, 152 (2013). https://doi.org/10.1007/JHEP04(2013)152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)152

Keywords

Navigation