Skip to main content
Log in

Magnetic field-induced gluonic (inverse) catalysis and pressure (an)isotropy in QCD

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the influence of strong external magnetic fields on gluonic and fermionic observables in the QCD vacuum at zero and nonzero temperatures, via lattice simulations with N f  = 1 + 1 + 1 staggered quarks of physical masses. The gluonic action density is found to undergo magnetic catalysis at low temperatures and inverse magnetic catalysis near and above the transition temperature, similar to the quark condensate. Moreover, the gluonic action develops an anisotropy: the chromo-magnetic field parallel to the external field is enhanced, while the chromo-electric field in this direction is suppressed. We demonstrate that the same hierarchy is obtained using the Euler-Heisenberg effective action. Conversely, the topological charge density correlator does not reveal a significant anisotropy up to magnetic fields eB ≈ 1 GeV2. Furthermore, we show that the pressure remains isotropic even for nonzero magnetic fields, if it is defined through a compression of the system at fixed external field. In contrast, if the flux of the field is kept fixed during the compression — which is the situation realized in the lattice simulation — the pressure develops an anisotropy. We estimate the quark and gluonic contributions to this anisotropy, and relate them to the magnetization of the QCD vacuum. After performing electric charge renormalization, we obtain an estimate for the magnetization, which indicates that QCD is paramagnetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Vachaspati, Magnetic fields from cosmological phase transitions, Phys. Lett. B 265 (1991) 258 [INSPIRE].

    Article  ADS  Google Scholar 

  2. R.C. Duncan and C. Thompson, Formation of very strongly magnetized neutron starsImplications for γ-ray bursts, Astrophys. J. 392 (1992) L9 [INSPIRE].

    Article  ADS  Google Scholar 

  3. V. Skokov, A.Y. Illarionov and V. Toneev, Estimate of the magnetic field strength in heavy-ion collisions, Int. J. Mod. Phys. A 24 (2009) 5925 [arXiv:0907.1396] [INSPIRE].

    Article  ADS  Google Scholar 

  4. D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change in heavy ion collisions:Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [INSPIRE].

    Article  ADS  Google Scholar 

  5. K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].

    ADS  Google Scholar 

  6. V. Gusynin, V. Miransky and I. Shovkovy, Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field, Nucl. Phys. B 462 (1996) 249 [hep-ph/9509320] [INSPIRE].

    Article  ADS  Google Scholar 

  7. L. Landau, Diamagnetismus der Metalle, Z. Physik A 64 (1930) 629.

    Article  ADS  Google Scholar 

  8. T. Banks and A. Casher, Chiral symmetry breaking in confining theories, Nucl. Phys. B 169 (1980) 103 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. G. Endrodi, QCD equation of state at nonzero magnetic fields in the hadron resonance gas model, JHEP 04 (2013) 023 [arXiv:1301.1307] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. M. D’Elia, S. Mukherjee and F. Sanfilippo, QCD phase transition in a strong magnetic background, Phys. Rev. D 82 (2010) 051501 [arXiv:1005.5365] [INSPIRE].

    ADS  Google Scholar 

  11. F. Bruckmann and G. Endrodi, Dressed Wilson loops as dual condensates in response to magnetic and electric fields, Phys. Rev. D 84 (2011) 074506 [arXiv:1104.5664] [INSPIRE].

    ADS  Google Scholar 

  12. G. Bali et al., The QCD phase diagram for external magnetic fields, JHEP 02 (2012) 044 [arXiv:1111.4956] [INSPIRE].

    Article  ADS  Google Scholar 

  13. G. Bali et al., QCD quark condensate in external magnetic fields, Phys. Rev. D 86 (2012) 071502 [arXiv:1206.4205] [INSPIRE].

    ADS  Google Scholar 

  14. E.-M. Ilgenfritz, M. Kalinowski, M. Muller-Preussker, B. Petersson and A. Schreiber, Two-color QCD with staggered fermions at finite temperature under the influence of a magnetic field, Phys. Rev. D 85 (2012) 114504 [arXiv:1203.3360] [INSPIRE].

    ADS  Google Scholar 

  15. I.A. Shovkovy, Magnetic catalysis: a review, arXiv:1207.5081 [INSPIRE].

  16. F. Bruckmann, G. Endrődi and T. Kovács, Inverse magnetic catalysis and the Polyakov loop, JHEP 04 (2013) 112.

    Article  ADS  Google Scholar 

  17. G. Basar, G.V. Dunne and D.E. Kharzeev, Electric dipole moment induced by a QCD instanton in an external magnetic field, Phys. Rev. D 85 (2012) 045026 [arXiv:1112.0532] [INSPIRE].

    ADS  Google Scholar 

  18. B. Ioffe and A.V. Smilga, Nucleon magnetic moments and magnetic properties of vacuum in QCD, Nucl. Phys. B 232 (1984) 109 [INSPIRE].

    Article  ADS  Google Scholar 

  19. G. Bali et al., Magnetic susceptibility of QCD at zero and at finite temperature from the lattice, Phys. Rev. D 86 (2012) 094512 [arXiv:1209.6015] [INSPIRE].

    ADS  Google Scholar 

  20. P. Buividovich, M. Chernodub, E. Luschevskaya and M. Polikarpov, Chiral magnetization of non-abelian vacuum: a lattice study, Nucl. Phys. B 826 (2010) 313 [arXiv:0906.0488] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. V. Braguta, P. Buividovich, T. Kalaydzhyan, S. Kuznetsov and M. Polikarpov, The chiral magnetic effect and chiral symmetry breaking in SU(3) quenched lattice gauge theory, Phys. Atom. Nucl. 75 (2012) 488 [arXiv:1011.3795] [INSPIRE].

    Article  ADS  Google Scholar 

  22. R. Blandford and L. Hernquist, Magnetic susceptibility of a neutron star crust, J. Phys C 15 (1982) 6233.

    ADS  Google Scholar 

  23. E.J. Ferrer, V. de la Incera, J.P. Keith, I. Portillo and P.P. Springsteen, Equation of state of a dense and magnetized fermion system, Phys. Rev. C 82 (2010) 065802 [arXiv:1009.3521] [INSPIRE].

    ADS  Google Scholar 

  24. A. Potekhin and D. Yakovlev, Comment onEquation of state of dense and magnetized fermion system’, Phys. Rev. C 85 (2012) 039801 [arXiv:1109.3783] [INSPIRE].

    ADS  Google Scholar 

  25. E.J. Ferrer and V. de la Incera, Reply to comment onEquation of state of dense and magnetized fermion system’, Phys. Rev. C 85 (2012) 039802 [arXiv:1110.0420] [INSPIRE].

    ADS  Google Scholar 

  26. M. Strickland, V. Dexheimer and D. Menezes, Bulk properties of a Fermi gas in a magnetic field, Phys. Rev. D 86 (2012) 125032 [arXiv:1209.3276] [INSPIRE].

    ADS  Google Scholar 

  27. A. Kandus, K.E. Kunze and C.G. Tsagas, Primordial magnetogenesis, Phys. Rept. 505 (2011) 1 [arXiv:1007.3891] [INSPIRE].

    Article  ADS  Google Scholar 

  28. B. Müller, J. Schukraft and B. Wyslouch, First results from Pb+Pb collisions at the LHC, Ann. Rev. Nucl. Part. Sci. 62 (2012) 361 [arXiv:1202.3233] [INSPIRE].

    Article  ADS  Google Scholar 

  29. B. Schenke, P. Tribedy and R. Venugopalan, Fluctuating glasma initial conditions and flow in heavy ion collisions, Phys. Rev. Lett. 108 (2012) 252301 [arXiv:1202.6646] [INSPIRE].

    Article  ADS  Google Scholar 

  30. U.W. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, arXiv:1301.2826 [INSPIRE].

  31. S. Borsányi et al., The QCD equation of state with dynamical quarks, JHEP 11 (2010) 077 [arXiv:1007.2580] [INSPIRE].

    Article  ADS  Google Scholar 

  32. P. Weisz, Continuum limit improved lattice action for pure Yang-Mills theory. 1, Nucl. Phys. B 212 (1983) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. P.J. Moran and D.B. Leinweber, Over-improved stout-link smearing, Phys. Rev. D 77 (2008) 094501 [arXiv:0801.1165] [INSPIRE].

    ADS  Google Scholar 

  34. S.O. Bilson-Thompson, D.B. Leinweber and A.G. Williams, Highly improved lattice field strength tensor, Annals Phys. 304 (2003) 1 [hep-lat/0203008] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  35. E.-M. Ilgenfritz et al., Vacuum structure revealed by over-improved stout-link smearing compared with the overlap analysis for quenched QCD, Phys. Rev. D 77 (2008) 074502 [Erratum ibid. D 77 (2008) 099902] [arXiv:0801.1725] [INSPIRE].

    Google Scholar 

  36. F. Bruckmann, F. Gruber, N. Cundy, A. Schafer and T. Lippert, Topology of dynamical lattice configurations including results from dynamical overlap fermions, Phys. Lett. B 707 (2012)278 [arXiv:1107.0897] [INSPIRE].

    Article  ADS  Google Scholar 

  37. F. Niedermayer, Exact chiral symmetry, topological charge and related topics, Nucl. Phys. Proc. Suppl. 73 (1999) 105 [hep-lat/9810026] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  38. I. Horvath et al., On the local structure of topological charge fluctuations in QCD, Phys. Rev. D 67 (2003) 011501 [hep-lat/0203027] [INSPIRE].

    ADS  Google Scholar 

  39. J. Rafelski, Electromagnetic fields in the QCD vacuum, hep-ph/9806389 [INSPIRE].

  40. H.T. Elze, B. Müller and J. Rafelski, Interfering QCD/QED vacuum polarization, hep-ph/9811372 [INSPIRE].

  41. M. D’Elia, M. Mariti and F. Negro, Susceptibility of the QCD vacuum to CP-odd electromagnetic background fields, Phys. Rev. Lett. 110 (2013) 082002 [arXiv:1209.0722] [INSPIRE].

    Article  ADS  Google Scholar 

  42. E. Seiler and I. Stamatescu, Some remarks on the Witten-Venziano formula for the eta-prime mass, MPI-PAE/PTh 10/87 (1987).

  43. B. Ioffe and K. Zyablyuk, Gluon condensate in charmonium sum rules with three loop corrections, Eur. Phys. J. C 27 (2003) 229 [hep-ph/0207183] [INSPIRE].

    Article  ADS  Google Scholar 

  44. L. Landau and E. Lifshits, The classical theory of fields, Course on Theoretical Physics volume 2, Pergamon Press, U.K. (1971).

  45. V. Canuto and H. Chiu, Quantum theory of an electron gas in intense magnetic fields, Phys. Rev. 173 (1968) 1210 [INSPIRE].

    Article  ADS  Google Scholar 

  46. A.P. Martinez, H.P. Rojas and H.J. Mosquera Cuesta, Magnetic collapse of a neutron gas: can magnetars indeed be formed?, Eur. Phys. J. C 29 (2003) 111 [astro-ph/0303213] [INSPIRE].

    Article  ADS  Google Scholar 

  47. J. Jackson, Classical electrodynamics, Wiley, U.S.A. (1975).

    MATH  Google Scholar 

  48. F. Rohrlich, Classical charged particles, World Scientific, Singapore (2007).

    Book  MATH  Google Scholar 

  49. R.D. Blandford and L. Hernquist, Magnetic susceptibility of a neutron star crust, J. Phys. C 15 (1982) 6233.

    ADS  Google Scholar 

  50. L. Landau, E. Lifshitz and L. Pitaevskii, Electrodynamics of continuous media, Course of theoretical physics, Butterworth-Heinemann, U.K. (1995).

  51. F. Karsch, SU(N) gauge theory couplings on asymmetric lattices, Nucl. Phys. B 205 (1982) 285 [INSPIRE].

    Article  ADS  Google Scholar 

  52. F. Karsch and I. Stamatescu, QCD thermodynamics with light quarks: quantum corrections to the fermionic anisotropy parameter, Phys. Lett. B 227 (1989) 153 [INSPIRE].

    Article  ADS  Google Scholar 

  53. E.S. Fraga, J. Noronha and L.F. Palhares, Large N c deconfinement transition in the presence of a magnetic field, arXiv:1207.7094 [INSPIRE].

  54. H. Leutwyler and A.V. Smilga, Spectrum of Dirac operator and role of winding number in QCD, Phys. Rev. D 46 (1992) 5607 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  55. J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. P. Elmfors, D. Persson and B.-S. Skagerstam, Real time thermal propagators and the QED effective action for an external magnetic field, Astropart. Phys. 2 (1994) 299 [hep-ph/9312226] [INSPIRE].

    Article  ADS  Google Scholar 

  57. G.V. Dunne, Heisenberg-Euler effective lagrangians: basics and extensions, hep-th/0406216 [INSPIRE].

  58. M. Cheng et al., The QCD equation of state with almost physical quark masses, Phys. Rev. D 77 (2008) 014511 [arXiv:0710.0354] [INSPIRE].

    ADS  Google Scholar 

  59. W.-J. Lee, Quark mass renormalization on the lattice with staggered fermions, Phys. Rev. D 49 (1994) 3563 [hep-lat/9310018] [INSPIRE].

    ADS  Google Scholar 

  60. J. Engels, F. Karsch, H. Satz and I. Montvay, Gauge field thermodynamics for the SU(2) Yang-Mills system, Nucl. Phys. B 205 (1982) 545 [INSPIRE].

    Article  ADS  Google Scholar 

  61. G.S. Bali, Casimir scaling of SU(3) static potentials, Phys. Rev. D 62 (2000) 114503 [hep-lat/0006022] [INSPIRE].

    ADS  Google Scholar 

  62. S. Borsányi et al., Anisotropy tuning with the Wilson flow, arXiv:1205.0781 [INSPIRE].

  63. L. Levkova, T. Manke and R. Mawhinney, Two-flavor QCD thermodynamics using anisotropic lattices, Phys. Rev. D 73 (2006) 074504 [hep-lat/0603031] [INSPIRE].

    ADS  Google Scholar 

  64. S. Sakai, T. Saito and A. Nakamura, Anisotropic lattice with improved gauge actions. 1. Study of fundamental parameters in weak coupling regions, Nucl. Phys. B 584 (2000) 528 [hep-lat/0002029] [INSPIRE].

    Article  ADS  Google Scholar 

  65. W. Heisenberg and H. Euler, Consequences of Diracs theory of positrons, Z. Phys. 98 (1936) 714 [physics/0605038] [INSPIRE].

    Article  ADS  Google Scholar 

  66. V. Novikov, M.A. Shifman, A. Vainshtein and V.I. Zakharov, Calculations in external fields in quantum chromodynamics. Technical review, Fortsch. Phys. 32 (1984) 585 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Endrődi.

Additional information

ArXiv ePrint: 1303.1328

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bali, G.S., Bruckmann, F., Endrődi, G. et al. Magnetic field-induced gluonic (inverse) catalysis and pressure (an)isotropy in QCD. J. High Energ. Phys. 2013, 130 (2013). https://doi.org/10.1007/JHEP04(2013)130

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)130

Keywords

Navigation