Skip to main content
Log in

On genera of curves from high-loop generalized unitarity cuts

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Generalized unitarity cut of a Feynman diagram generates an algebraic system of polynomial equations. At high-loop levels, these equations may define a complex curve or a (hyper-)surface with complicated topology. We study the curve cases, i.e., a 4-dimensional L-loop diagram with (4L−1) cuts. The topology of a complex curve is classified by its genus. Hence in this paper, we use computational algebraic geometry to calculate the genera of curves from two and three-loop unitarity cuts. The global structure of degenerate on-shell equations under some specific kinematic configurations is also sketched. The genus information can also be used to judge if a unitary cut solution could be rationally parameterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Hjalte Frellesvig, Cristian Vergu, … Matt von Hippel

References

  1. R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. L.D. Landau, On analytic properties of vertex parts in quantum field theory, Nucl. Phys. 13 (1959) 181 [INSPIRE].

    Article  MATH  Google Scholar 

  4. S. Mandelstam, Determination of the pion-nucleon scattering amplitude from dispersion relations and unitarity. General theory, Phys. Rev. 112 (1958) 1344 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Mandelstam, Analytic properties of transition amplitudes in perturbation theory, Phys. Rev. 115 (1959) 1741 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys. 1 (1960) 429 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].

    Article  ADS  Google Scholar 

  8. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, D-dimensional unitarity cut method, Phys. Lett. B 645 (2007) 213 [hep-ph/0609191] [INSPIRE].

    Article  ADS  Google Scholar 

  11. C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes, JHEP 03 (2007) 111 [hep-ph/0612277] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Britto, Loop amplitudes in gauge theories: modern analytic approaches, J. Phys. A 44 (2011) 454006 [arXiv:1012.4493] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. R. Britto, E. Buchbinder, F. Cachazo and B. Feng, One-loop amplitudes of gluons in SQCD, Phys. Rev. D 72 (2005) 065012 [hep-ph/0503132] [INSPIRE].

    ADS  Google Scholar 

  15. F. Tkachov, A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. K. Chetyrkin and F. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

    Article  ADS  Google Scholar 

  17. S. Laporta, Calculation of master integrals by difference equations, Phys. Lett. B 504 (2001) 188 [hep-ph/0102032] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev. D 75 (2007) 125019 [arXiv:0704.1835] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. R.K. Ellis, W. Giele and Z. Kunszt, A numerical unitarity formalism for evaluating one-loop amplitudes, JHEP 03 (2008) 003 [arXiv:0708.2398] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. W.B. Kilgore, One-loop integral coefficients from generalized unitarity, arXiv:0711.5015 [INSPIRE].

  23. W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP 04 (2008) 049 [arXiv:0801.2237] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. G. Ossola, C.G. Papadopoulos and R. Pittau, On the rational terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Badger, Direct extraction of one loop rational terms, JHEP 01 (2009) 049 [arXiv:0806.4600] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. J. Gluza, K. Kajda and D.A. Kosower, Towards a basis for planar two-loop integrals, Phys. Rev. D 83 (2011) 045012 [arXiv:1009.0472] [INSPIRE].

    ADS  Google Scholar 

  27. D.A. Kosower and K.J. Larsen, Maximal unitarity at two loops, Phys. Rev. D 85 (2012) 045017 [arXiv:1108.1180] [INSPIRE].

    ADS  Google Scholar 

  28. K.J. Larsen, Global poles of the two-loop six-point N = 4 SYM integrand, Phys. Rev. D 86 (2012) 085032 [arXiv:1205.0297] [INSPIRE].

    ADS  Google Scholar 

  29. S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP 10 (2012) 026 [arXiv:1205.0801] [INSPIRE].

    Article  ADS  Google Scholar 

  30. R.H. Kleiss, I. Malamos, C.G. Papadopoulos and R. Verheyen, Counting to one: reducibility of one- and two-loop amplitudes at the integrand level, JHEP 12 (2012) 038 [arXiv:1206.4180] [INSPIRE].

    Article  ADS  Google Scholar 

  31. H. Johansson, D.A. Kosower and K.J. Larsen, Two-loop maximal unitarity with external masses, Phys. Rev. D 87 (2013) 025030 [arXiv:1208.1754] [INSPIRE].

    ADS  Google Scholar 

  32. H. Johansson, D.A. Kosower and K.J. Larsen, An overview of maximal unitarity at two loops, PoS(LL2012)066 [arXiv:1212.2132] [INSPIRE].

  33. P. Mastrolia and G. Ossola, On the integrand-reduction method for two-loop scattering amplitudes, JHEP 11 (2011) 014 [arXiv:1107.6041] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. S. Badger, H. Frellesvig and Y. Zhang, Hepta-cuts of two-loop scattering amplitudes, JHEP 04 (2012) 055 [arXiv:1202.2019] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. Y. Zhang, Integrand-level reduction of loop amplitudes by computational algebraic geometry methods, JHEP 09 (2012) 042 [arXiv:1205.5707] [INSPIRE].

    Article  ADS  Google Scholar 

  36. P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Scattering amplitudes from multivariate polynomial division, Phys. Lett. B 718 (2012) 173 [arXiv:1205.7087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. B. Feng and R. Huang, The classification of two-loop integrand basis in pure four-dimension, JHEP 02 (2013) 117 [arXiv:1209.3747] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Integrand-reduction for two-loop scattering amplitudes through multivariate polynomial division, arXiv:1209.4319 [INSPIRE].

  39. P. Mastrolia, E. Mirabella, G. Ossola, T. Peraro and H. van Deurzen, The integrand reduction of one- and two-loop scattering amplitudes, PoS(LL2012)028 [arXiv:1209.5678] [INSPIRE].

  40. S. Badger, H. Frellesvig and Y. Zhang, An integrand reconstruction method for three-loop amplitudes, JHEP 08 (2012) 065 [arXiv:1207.2976] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer-Verlag, New York U.S.A. (1977).

  42. D. Perrin, Algebraic geometry: an introduction, translated from the 1995 french original by C. Maclean, Universitext, Springer-Verlag Ltd., London U.K. (2008).

  43. D.R. Grayson and M.E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/.

  44. D. Cox, J. Little and D. O’Shea, Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra, third ed., Undergraduate Texts in Mathematics, Springer, New York U.S.A. (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhang.

Additional information

ArXiv ePrint: 1302.1023

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, R., Zhang, Y. On genera of curves from high-loop generalized unitarity cuts. J. High Energ. Phys. 2013, 80 (2013). https://doi.org/10.1007/JHEP04(2013)080

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)080

Keywords

Navigation