Skip to main content
Log in

Recursive generation of one-loop amplitudes in the Standard Model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We introduce the computer code Recola for the recursive generation of tree-level and one-loop amplitudes in the Standard Model. Tree-level amplitudes are constructed using off-shell currents instead of Feynman diagrams as basic building blocks. One-loop amplitudes are represented as linear combinations of tensor integrals whose coefficients are calculated similarly to the tree-level amplitudes by recursive construction of loop off-shell currents. We introduce a novel algorithm for the treatment of colour, assigning a colour structure to each off-shell current which enables us to recursively construct the colour structure of the amplitude efficiently. Recola is interfaced with a tensor-integral library and provides complete one-loop Standard Model amplitudes including rational terms and counterterms. As a first application we consider Z + 2 jets production at the LHC and calculate with Recola the next-to-leading-order electroweak corrections to the dominant partonic channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Federico Buccioni, Jean-Nicolas Lang, … Max F. Zoller

References

  1. M. Ciccolini, A. Denner and S. Dittmaier, Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC, Phys. Rev. D 77 (2008) 013002 [arXiv:0710.4749] [INSPIRE].

    ADS  Google Scholar 

  2. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop N point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].

    Article  ADS  Google Scholar 

  4. R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. G. Ossola, C.G. Papadopoulos and R. Pittau, Numerical evaluation of six-photon amplitudes, JHEP 07 (2007) 085 [arXiv:0704.1271] [INSPIRE].

    Article  ADS  Google Scholar 

  7. R.K. Ellis, W. Giele and Z. Kunszt, A numerical unitarity formalism for evaluating one-loop amplitudes, JHEP 03 (2008) 003 [arXiv:0708.2398] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP 04 (2008) 049 [arXiv:0801.2237] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. R.K. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized d-dimensional unitarity, Nucl. Phys. B 822 (2009) 270 [arXiv:0806.3467] [INSPIRE].

    Article  ADS  Google Scholar 

  10. G. Passarino and M. Veltman, One loop corrections for e + e annihilation into μ + μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

    Article  ADS  Google Scholar 

  11. C. Berger, Z. Bern, L. Dixon, F. Febres Cordero, D. Forde et al., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [INSPIRE].

    ADS  Google Scholar 

  12. W. Giele and G. Zanderighi, On the numerical evaluation of one-loop amplitudes: the gluonic case, JHEP 06 (2008) 038 [arXiv:0805.2152] [INSPIRE].

    Article  ADS  Google Scholar 

  13. A. Lazopoulos, Multi-gluon one-loop amplitudes numerically, arXiv:0812.2998 [INSPIRE].

  14. W. Giele, Z. Kunszt and J. Winter, Efficient color-dressed calculation of virtual corrections, Nucl. Phys. B 840 (2010) 214 [arXiv:0911.1962] [INSPIRE].

    Article  ADS  Google Scholar 

  15. S. Badger, B. Biedermann and P. Uwer, NGluon: a package to calculate one-loop multi-gluon amplitudes, Comput. Phys. Commun. 182 (2011) 1674 [arXiv:1011.2900] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  16. V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni et al., Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].

    Article  ADS  Google Scholar 

  17. G. Bevilacqua, M. Czakon, M. Garzelli, A. van Hameren, A. Kardos et al., HELAC-NLO, Comput. Phys. Commun. 184 (2013) 986 [arXiv:1110.1499] [INSPIRE].

    Article  ADS  Google Scholar 

  18. G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia et al., Automated one-loop calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].

    Article  ADS  Google Scholar 

  19. C. Berger, Z. Bern, L.J. Dixon, F. Febres Cordero, D. Forde et al., Next-to-leading order QCD predictions for W + 3-jet distributions at hadron colliders, Phys. Rev. D 80 (2009) 074036 [arXiv:0907.1984] [INSPIRE].

    ADS  Google Scholar 

  20. R.K. Ellis, K. Melnikov and G. Zanderighi, W + 3 jet production at the Tevatron, Phys. Rev. D 80 (2009) 094002 [arXiv:0906.1445] [INSPIRE].

    ADS  Google Scholar 

  21. C. Berger, Z. Bern, L.J. Dixon, F. Febres Cordero, D. Forde et al., Precise predictions for W +3 jet production at hadron colliders, Phys. Rev. Lett. 102 (2009) 222001 [arXiv:0902.2760] [INSPIRE].

    Article  ADS  Google Scholar 

  22. G. Bevilacqua, M. Czakon, C. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO wishlist: pp\( t\overline{t}b\overline{b} \), JHEP 09 (2009) 109 [arXiv:0907.4723] [INSPIRE].

    Article  ADS  Google Scholar 

  23. K. Melnikov and G. Zanderighi, W + 3 jet production at the LHC as a signal or background, Phys. Rev. D 81 (2010) 074025 [arXiv:0910.3671] [INSPIRE].

    ADS  Google Scholar 

  24. G. Bevilacqua, M. Czakon, C. Papadopoulos and M. Worek, Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of pp\( t\overline{t} \) + 2 jets at next-to-leading order, Phys. Rev. Lett. 104 (2010) 162002 [arXiv:1002.4009] [INSPIRE].

    Article  ADS  Google Scholar 

  25. C. Berger, Z. Bern, L.J. Dixon, F. Febres Cordero, D. Forde et al., Next-to-leading order QCD predictions for Z, γ + 3-jet distributions at the Tevatron, Phys. Rev. D 82 (2010) 074002 [arXiv:1004.1659] [INSPIRE].

    ADS  Google Scholar 

  26. T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, Next-to-leading order QCD predictions for W + W + jj production at the LHC, JHEP 12 (2010) 053 [arXiv:1007.5313] [INSPIRE].

    Article  ADS  Google Scholar 

  27. C. Berger, Z. Bern, L.J. Dixon, F. Febres Cordero, D. Forde et al., Precise predictions for W +4 jet production at the large hadron collider, Phys. Rev. Lett. 106(2011) 092001 [arXiv:1009.2338] [INSPIRE].

    Article  ADS  Google Scholar 

  28. G. Bevilacqua, M. Czakon, A. van Hameren, C.G. Papadopoulos and M. Worek, Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order, JHEP 02 (2011) 083 [arXiv:1012.4230] [INSPIRE].

    Article  ADS  Google Scholar 

  29. T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, NLO QCD corrections for W + W pair production in association with two jets at hadron colliders, Phys. Rev. D 83 (2011) 114043 [arXiv:1104.2327] [INSPIRE].

    ADS  Google Scholar 

  30. R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau et al., W and Z/γ∗ boson production in association with a bottom-antibottom pair, JHEP 09 (2011) 061 [arXiv:1106.6019] [INSPIRE].

    Article  ADS  Google Scholar 

  31. H. Ita, Z. Bern, L. Dixon, F. Febres Cordero, D. Kosower et al., Precise predictions for Z + 4 jets at hadron colliders, Phys. Rev. D 85 (2012) 031501 [arXiv:1108.2229] [INSPIRE].

    ADS  Google Scholar 

  32. G. Bevilacqua, M. Czakon, C. Papadopoulos and M. Worek, Hadronic top-quark pair production in association with two jets at next-to-leading order QCD, Phys. Rev. D 84 (2011) 114017 [arXiv:1108.2851] [INSPIRE].

    ADS  Google Scholar 

  33. Z. Bern, G. Diana, L. Dixon, F. Febres Cordero, S. Höche et al., Four-jet production at the large hadron collider at next-to-leading order in QCD, Phys. Rev. Lett. 109 (2012) 042001 [arXiv:1112.3940] [INSPIRE].

    Article  ADS  Google Scholar 

  34. N. Greiner, G. Heinrich, P. Mastrolia, G. Ossola, T. Reiter et al., NLO QCD corrections to the production of W + W plus two jets at the LHC, Phys. Lett. B 713 (2012) 277 [arXiv:1202.6004] [INSPIRE].

    Article  ADS  Google Scholar 

  35. G. Bevilacqua and M. Worek, Constraining BSM physics at the LHC: four top final states with NLO accuracy in perturbative QCD, JHEP 07 (2012) 111 [arXiv:1206.3064] [INSPIRE].

    Article  ADS  Google Scholar 

  36. S. Badger, B. Biedermann, P. Uwer and V. Yundin, NLO QCD corrections to multi-jet production at the LHC with a centre-of-mass energy of \( \sqrt{s}=8 \) TeV, Phys. Lett. B 718 (2013) 965 [arXiv:1209.0098] [INSPIRE].

    Article  ADS  Google Scholar 

  37. SM AND NLO MULTILEG and SM MC Working Groups collaboration, J. Alcaraz Maestre et al., The SM and NLO multileg and SM MC working groups: summary report, arXiv:1203.6803 [INSPIRE].

  38. D.E. Soper, Techniques for QCD calculations by numerical integration, Phys. Rev. D 62 (2000) 014009 [hep-ph/9910292] [INSPIRE].

    ADS  Google Scholar 

  39. S. Becker, C. Reuschle and S. Weinzierl, Numerical NLO QCD calculations, JHEP 12 (2010) 013 [arXiv:1010.4187] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Becker, D. Goetz, C. Reuschle, C. Schwan and S. Weinzierl, NLO results for five, six and seven jets in electron-positron annihilation, Phys. Rev. Lett. 108 (2012) 032005 [arXiv:1111.1733] [INSPIRE].

    Article  ADS  Google Scholar 

  41. G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].

    Article  ADS  Google Scholar 

  42. P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level, JHEP 08 (2010) 080 [arXiv:1006.0710] [INSPIRE].

    Article  ADS  Google Scholar 

  43. G. Heinrich, G. Ossola, T. Reiter and F. Tramontano, Tensorial reconstruction at the integrand level, JHEP 10 (2010) 105 [arXiv:1008.2441] [INSPIRE].

    Article  ADS  Google Scholar 

  44. R. Pittau, Testing and improving the numerical accuracy of the NLO predictions, Comput. Phys. Commun. 181 (2010) 1941 [arXiv:1006.3773] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  45. A. Ferroglia, M. Passera, G. Passarino and S. Uccirati, All purpose numerical evaluation of one loop multileg Feynman diagrams, Nucl. Phys. B 650 (2003) 162 [hep-ph/0209219] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and C. Schubert, An algebraic/numerical formalism for one-loop multi-leg amplitudes, JHEP 10 (2005) 015 [hep-ph/0504267] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].

    Article  ADS  Google Scholar 

  49. A. Bredenstein, A. Denner, S. Dittmaier and M. Weber, Radiative corrections to the semileptonic and hadronic Higgs-boson decays HW W/ZZ → 4 fermions, JHEP 02 (2007) 080 [hep-ph/0611234] [INSPIRE].

    Article  ADS  Google Scholar 

  50. A. Denner, S. Dittmaier, T. Kasprzik and A. Mück, Electroweak corrections to W + jet hadroproduction including leptonic W-boson decays, JHEP 08 (2009) 075 [arXiv:0906.1656] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Denner, S. Dittmaier, T. Kasprzik and A. Mück, Electroweak corrections to dilepton + jet production at hadron colliders, JHEP 06 (2011) 069 [arXiv:1103.0914] [INSPIRE].

    Article  ADS  Google Scholar 

  52. A. Denner, S. Dittmaier, S. Kallweit and A. Mück, Electroweak corrections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with HAWK, JHEP 03 (2012) 075 [arXiv:1112.5142] [INSPIRE].

    Article  ADS  Google Scholar 

  53. A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to pp\( t\overline{t}b\overline{b} \) + × at the LHC, Phys. Rev. Lett. 103 (2009) 012002 [arXiv:0905.0110] [INSPIRE].

    Article  ADS  Google Scholar 

  54. A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to WWbb production at hadron colliders, Phys. Rev. Lett. 106 (2011) 052001 [arXiv:1012.3975] [INSPIRE].

    Article  ADS  Google Scholar 

  55. F. Campanario, C. Englert, M. Rauch and D. Zeppenfeld, Precise predictions for Wγγ +jet production at hadron colliders, Phys. Lett. B 704 (2011) 515 [arXiv:1106.4009] [INSPIRE].

    Article  ADS  Google Scholar 

  56. L. Reina and T. Schutzmeier, Towards \( Wb\overline{b} \) + j at NLO with an automatized approach to one-loop computations, JHEP 09 (2012) 119 [arXiv:1110.4438] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A. van Hameren, Multi-gluon one-loop amplitudes using tensor integrals, JHEP 07 (2009) 088 [arXiv:0905.1005] [INSPIRE].

    Article  Google Scholar 

  59. F.A. Berends and W. Giele, Recursive calculations for processes with N gluons, Nucl. Phys. B 306 (1988) 759 [INSPIRE].

    Article  ADS  Google Scholar 

  60. J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [INSPIRE].

    ADS  Google Scholar 

  61. J.M. Campbell, R.K. Ellis and D.L. Rainwater, Next-to-leading order QCD predictions for W +2 jet and Z+2 jet production at the CERN LHC, Phys. Rev. D 68(2003) 094021 [hep-ph/0308195] [INSPIRE].

    ADS  Google Scholar 

  62. C. Oleari and D. Zeppenfeld, QCD corrections to electroweak ν l jj and+ jj production, Phys. Rev. D 69 (2004) 093004 [hep-ph/0310156] [INSPIRE].

    ADS  Google Scholar 

  63. F. Dyson, The S matrix in quantum electrodynamics, Phys. Rev. 75 (1949) 1736 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. J.S. Schwinger, On the Greens functions of quantized fields. 1., Proc. Nat. Acad. Sci. 37 (1951)452 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. J.S. Schwinger, On the Greens functions of quantized fields. 2., Proc. Nat. Acad. Sci. 37 (1951)455 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. A. Kanaki and C.G. Papadopoulos, HELAC: a package to compute electroweak helicity amplitudes, Comput. Phys. Commun. 132 (2000) 306 [hep-ph/0002082] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  67. C.G. Papadopoulos and M. Worek, Multi-parton cross sections at hadron colliders, Eur. Phys. J. C 50 (2007) 843 [hep-ph/0512150] [INSPIRE].

    Article  ADS  Google Scholar 

  68. A. Cafarella, C.G. Papadopoulos and M. Worek, Helac-Phegas: a generator for all parton level processes, Comput. Phys. Commun. 180 (2009) 1941 [arXiv:0710.2427] [INSPIRE].

    Article  ADS  Google Scholar 

  69. K. Hagiwara and D. Zeppenfeld, Amplitudes for multiparton processes involving a current at e + e , e ± p and hadron colliders, Nucl. Phys. B 313 (1989) 560 [INSPIRE].

    Article  ADS  Google Scholar 

  70. F. Caravaglios and M. Moretti, An algorithm to compute Born scattering amplitudes without Feynman graphs, Phys. Lett. B 358 (1995) 332 [hep-ph/9507237] [INSPIRE].

    Article  ADS  Google Scholar 

  71. G. Ossola, C.G. Papadopoulos and R. Pittau, On the rational terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  72. P. Draggiotis, M. Garzelli, C. Papadopoulos and R. Pittau, Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP 04 (2009) 072 [arXiv:0903.0356] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  73. M. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the electroweak 1-loop amplitudes, JHEP 01 (2010) 040 [Erratum ibid. 1010 (2010) 097] [arXiv:0910.3130] [INSPIRE].

    Article  ADS  Google Scholar 

  74. H.-S. Shao, Y.-J. Zhang and K.-T. Chao, Feynman rules for the rational part of the standard model one-loop amplitudes in thet Hooft-Veltman γ5 scheme, JHEP 09 (2011) 048 [arXiv:1106.5030] [INSPIRE].

    Article  ADS  Google Scholar 

  75. A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].

    ADS  Google Scholar 

  76. A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e → 4 fermions +γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].

    Article  ADS  Google Scholar 

  77. A. Denner, S. Dittmaier, M. Roth and L. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504–507] [hep-ph/0505042] [INSPIRE].

    Article  ADS  Google Scholar 

  78. Z. Bern and D.A. Kosower, Color decomposition of one loop amplitudes in gauge theories, Nucl. Phys. B 362 (1991) 389 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  80. A. Kanaki and C.G. Papadopoulos, HELAC-PHEGAS: automatic computation of helicity amplitudes and cross-sections, hep-ph/0012004 [INSPIRE].

  81. F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Color flow decomposition of QCD amplitudes, Phys. Rev. D 67 (2003) 014026 [hep-ph/0209271] [INSPIRE].

    ADS  Google Scholar 

  82. A. Denner and S. Dittmaier, The complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. Proc. Suppl. 160 (2006) 22 [hep-ph/0605312] [INSPIRE].

    Article  ADS  Google Scholar 

  83. D.Y. Bardin, A. Leike, T. Riemann and M. Sachwitz, Energy dependent width effects in e + e annihilation near the Z boson pole, Phys. Lett. B 206 (1988) 539 [INSPIRE].

    ADS  Google Scholar 

  84. W. Beenakker and A. Denner, Infrared divergent scalar box integrals with applications in the electroweak standard model, Nucl. Phys. B 338 (1990) 349 [INSPIRE].

    Article  ADS  Google Scholar 

  85. A. Denner, U. Nierste and R. Scharf, A compact expression for the scalar one loop four point function, Nucl. Phys. B 367 (1991) 637 [INSPIRE].

    Article  ADS  Google Scholar 

  86. A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys. B 844 (2011) 199 [arXiv:1005.2076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  87. S. Dittmaier and M. Krämer, Electroweak radiative corrections to W boson production at hadron colliders, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062] [INSPIRE].

    ADS  Google Scholar 

  88. S. Catani and M. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503–504] [hep-ph/9605323] [INSPIRE].

    Article  ADS  Google Scholar 

  89. A. Denner, S. Dittmaier, T. Gehrmann and C. Kurz, Electroweak corrections to hadronic event shapes and jet production in e + e annihilation, Nucl. Phys. B 836 (2010) 37 [arXiv:1003.0986] [INSPIRE].

    Article  ADS  Google Scholar 

  90. E.N. Glover and A. Morgan, Measuring the photon fragmentation function at LEP, Z. Phys. C 62 (1994) 311 [INSPIRE].

    ADS  Google Scholar 

  91. ALEPH collaboration, D. Buskulic et al., First measurement of the quark to photon fragmentation function, Z. Phys. C 69 (1996) 365 [INSPIRE].

    Google Scholar 

  92. A. Denner, S. Dittmaier and L. Hofer, COLLIER, a Complex One-Loop Library In Extended Regularizations, in preparation.

  93. T. Motz, Generic Monte Carlo event generator for LHC processes, PhD Thesis, ETH, Zürich (2011).

  94. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  95. T. Hahn and C. Schappacher, The implementation of the minimal supersymmetric standard model in FeynArts and FormCalc, Comput. Phys. Commun. 143 (2002) 54 [hep-ph/0105349] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  96. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and d-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    Article  ADS  Google Scholar 

  97. S. Dittmaier, Weyl-van der Waerden formalism for helicity amplitudes of massive particles, Phys. Rev. D 59 (1998) 016007 [hep-ph/9805445] [INSPIRE].

    ADS  Google Scholar 

  98. E. Accomando, A. Denner and C. Meier, Electroweak corrections to W γ and Zγ production at the LHC, Eur. Phys. J. C 47 (2006) 125 [hep-ph/0509234] [INSPIRE].

    Article  ADS  Google Scholar 

  99. S. Dittmaier and M. Roth, LUSIFER: a LUcid approach to SIx FERmion production, Nucl. Phys. B 642 (2002) 307 [hep-ph/0206070] [INSPIRE].

    Article  ADS  Google Scholar 

  100. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  101. Tevatron Electroweak Working Group, CDF Collaboration, D0 collaboration, Combination of CDF and D0 results on the mass of the top quark using up to 5.8 fb −1 of data, arXiv:1107.5255 [INSPIRE].

  102. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  103. M. Cacciari, G.P. Salam and G. Soyez, The k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  104. P. Ciafaloni and D. Comelli, Sudakov enhancement of electroweak corrections, Phys. Lett. B 446 (1999) 278 [hep-ph/9809321] [INSPIRE].

    Article  ADS  Google Scholar 

  105. J.H. Kühn and A. Penin, Sudakov logarithms in electroweak processes, hep-ph/9906545 [INSPIRE].

  106. V.S. Fadin, L. Lipatov, A.D. Martin and M. Melles, Resummation of double logarithms in electroweak high-energy processes, Phys. Rev. D 61 (2000) 094002 [hep-ph/9910338] [INSPIRE].

    ADS  Google Scholar 

  107. A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 1. Results, Eur. Phys. J. C 18 (2001) 461 [hep-ph/0010201] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Denner.

Additional information

ArXiv ePrint: 1211.6316

Rights and permissions

Reprints and permissions

About this article

Cite this article

Actis, S., Denner, A., Hofer, L. et al. Recursive generation of one-loop amplitudes in the Standard Model. J. High Energ. Phys. 2013, 37 (2013). https://doi.org/10.1007/JHEP04(2013)037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)037

Keywords

Navigation