Skip to main content
Log in

Shear channel correlators from hot charged black holes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We compute numerically the full retarded Green’s functions for conserved currents in the shear channel of a (2 + 1)-dimensional field theory at non-zero temperature and density. This theory is assumed to be holographically dual to a non-extremal, electric Reissner-Nordstrøm AdS4 black hole with planar horizon. Using the holographic description we obtain results for arbitrary frequencies and momenta and survey the detailed structure of these correlators. In particular, we demonstrate the ‘repulsion’ and ‘clover-leaf crossing’ of their poles and stress the importance of the residues at the poles beyond the hydrodynamic regime. As a consistency check, we show that our results agree precisely with existing literature for the appropriate quasinormal frequencies of the bulk theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].

    ADS  Google Scholar 

  4. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

  5. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].

  7. M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS2, arXiv:0907.2694 [SPIRES].

  9. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. G.T. Horowitz, Introduction to holographic superconductors, arXiv:1002.1722 [SPIRES].

  11. J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [SPIRES].

    Google Scholar 

  12. D. Birmingham, I. Sachs and S.N. Solodukhin, Conformal field theory interpretation of black hole quasi-normal modes, Phys. Rev. Lett. 88 (2002) 151301 [hep-th/0112055] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D 62 (2000) 024027 [hep-th/9909056] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Edalati, J.I. Jottar and R.G. Leigh, Shear modes, criticality and extremal black holes, JHEP 04 (2010) 075 [arXiv:1001.0779] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear uid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].

    Article  ADS  Google Scholar 

  17. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. II: Sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [SPIRES].

    ADS  Google Scholar 

  20. V.E. Hubeny and M. Rangamani, A holographic view on physics out of equilibrium, Adv. High Energy Phys. 2010 (2010) 297916 [arXiv:1006.3675] [SPIRES].

    Google Scholar 

  21. X.-H. Ge, K. Jo and S.-J. Sin, Hydrodynamics of RN AdS 4 black hole and holographic optics, JHEP 03 (2011) 104 [arXiv:1012.2515] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  22. H. Kodama and A. Ishibashi, Master equations for perturbations of generalized static black holes with charge in higher dimensions, Prog. Theor. Phys. 111 (2004) 29 [hep-th/0308128] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. D.T. Son and A.O. Starinets, Hydrodynamics of R-charged black holes, JHEP 03 (2006) 052 [hep-th/0601157] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. O. Saremi, The viscosity bound conjecture and hydrodynamics of M2-brane theory at finite chemical potential, JHEP 10 (2006) 083 [hep-th/0601159] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. K. Maeda, M. Natsuume and T. Okamura, Viscosity of gauge theory plasma with a chemical potential from AdS/CFT, Phys. Rev. D 73 (2006) 066013 [hep-th/0602010] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. E.W. Leaver, Quasinormal modes of Reissner-Nordstrom black holes, Phys. Rev. D 41 (1990) 2986 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. F. Denef, S.A. Hartnoll and S. Sachdev, Quantum oscillations and black hole ringing, Phys. Rev. D 80 (2009) 126016 [arXiv:0908.1788] [SPIRES].

    ADS  Google Scholar 

  28. M. Edalati, J.I. Jottar and R.G. Leigh, Holography and the sound of criticality, JHEP 10 (2010) 058 [arXiv:1005.4075] [SPIRES].

    Article  ADS  Google Scholar 

  29. J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum criticality and holographic superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. M. Kaminski et al., Quasinormal modes of massive charged flavor branes, JHEP 03 (2010) 117 [arXiv:0911.3544] [SPIRES].

    Article  ADS  Google Scholar 

  33. A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev. Lett. 93 (2004) 090602 [hep-th/0311175] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon A. Gentle.

Additional information

ArXiv ePrint: 1012.1280

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brattan, D.K., Gentle, S.A. Shear channel correlators from hot charged black holes. J. High Energ. Phys. 2011, 82 (2011). https://doi.org/10.1007/JHEP04(2011)082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)082

Keywords

Navigation