Skip to main content
Log in

Large dimensions and small curvatures from supersymmetric brane back-reaction

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We compute the back-reaction of pairs of codimension-two branes within an explicit flux-stabilized compactification, to trace how its properties depend on the parameters that define the brane-bulk couplings. Both brane tension and magnetic couplings to the stabilizing flux play an important role in the resulting dynamics, with the magnetic coupling allowing some of the flux to be localized on the branes (thus changing the flux-quantization conditions). We find that back-reaction lifts the classical flat directions of the bulk supergravity, and we calculate both the scalar potential and changes to the extra-dimensional and on-brane geometries that result, as functions of the assumed brane couplings. When linearized about simple rugby-ball geometries the resulting solutions allow a systematic exploration of the system’s response. Several of the systems we explore have remarkable properties. Among these are a propensity for the extra dimensions to stabilize at exponentially large sizes, providing a mechanism for generating extremely large volumes. In some circumstances the brane-dilaton coupling allows the bulk dilaton to adjust to suppress the on-brane curvature parametrically below the change in brane tension, potentially providing a mechanism for reducing the vacuum energy. We explore the stability of this suppression to quantum effects in the case where their strength is controlled by the value of the field along the classical flat direction, and find it can (but need not) be stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. K. Lanczos, Flächenhafte Verteilung der Materie in der Einsteinschen Gravitationstheorie (in German), Phys. Z. 23 (1922) 239 [Annalen Phys. 379 (1924) 518].

    Google Scholar 

  4. C.W. Misner and D.H. Sharp, Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Phys. Rev. 136 (1964) B571 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuov. Cim. 44B (1966) 1 [Erratum ibid. B 48 (1967) 463] [SPIRES].

    ADS  Google Scholar 

  6. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B 475 (1996) 94 [hep-th/9603142] [SPIRES].

    Article  ADS  Google Scholar 

  9. P. Hořava and E. Witten, Heterotic and type-I string dynamics from eleven dimensions, Nucl. Phys. B 460 (1996) 506 [hep-th/9510209] [SPIRES].

    Article  ADS  Google Scholar 

  10. E. Witten, Strong coupling expansion of Calabi-Yau compactification, Nucl. Phys. B 471 (1996) 135 [hep-th/9602070] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. J.D. Lykken, Weak scale superstrings, Phys. Rev. D 54 (1996) 3693 [hep-th/9603133] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. K. Benakli, Phenomenology of low quantum gravity scale models, Phys. Rev. D 60 (1999) 104002 [hep-ph/9809582] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. C.P. Burgess, L.E. Ibáñez and F. Quevedo, Strings at the intermediate scale or is the Fermi scale dual to the Planck scale?, Phys. Lett. B 447 (1999) 257 [hep-ph/9810535] [SPIRES].

    ADS  Google Scholar 

  14. I. Antoniadis and K. Benakli, Large dimensions and string physics in future colliders, Int. J. Mod. Phys. A 15 (2000) 4237 [hep-ph/0007226] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. Y. Aghababaie, C.P. Burgess, S.L. Parameswaran and F. Quevedo, Towards a naturally small cosmological constant from branes in 6D supergravity, Nucl. Phys. B 680 (2004) 389 [hep-th/0304256] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [SPIRES].

    ADS  Google Scholar 

  17. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [SPIRES].

    ADS  Google Scholar 

  18. D. Atwood et al., Supersymmetric large extra dimensions are small and/or numerous, Phys. Rev. D 63 (2001) 025007 [hep-ph/0007178] [SPIRES].

    ADS  Google Scholar 

  19. J.L. Hewett and D. Sadri, Supersymmetric extra dimensions: gravitino effects in selectron pair production, Phys. Rev. D 69 (2004) 015001 [hep-ph/0204063] [SPIRES].

    ADS  Google Scholar 

  20. C.P. Burgess, Supersymmetric large extra dimensions and the cosmological constant: an update, Ann. Phys. 313 (2004) 283 [hep-th/0402200] [SPIRES].

    MathSciNet  Google Scholar 

  21. C.P. Burgess, Towards a natural theory of dark energy: supersymmetric large extra dimensions, AIP Conf. Proc. 743 (2005) 417 [hep-th/0411140] [SPIRES].

    Article  ADS  Google Scholar 

  22. C.P. Burgess, J. Matias and F. Quevedo, MSLED: a Minimal Supersymmetric Large Extra Dimensions scenario, Nucl. Phys. B 706 (2005) 71 [hep-ph/0404135] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. J. Matias and C.P. Burgess, MSLED, neutrino oscillations and the cosmological constant, JHEP 09 (2005) 052 [hep-ph/0508156] [SPIRES].

    Article  ADS  Google Scholar 

  24. P. Callin and C.P. Burgess, Deviations from Newton’s law in supersymmetric large extra dimensions, Nucl. Phys. B 752 (2006) 60 [hep-ph/0511216] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. C.P. Burgess, A. Maharana and F. Quevedo, Uber-naturalness: unexpectedly light scalars from supersymmetric extra dimensions, arXiv:1005.1199 [SPIRES].

  26. J.-W. Chen, M.A. Luty and E. Ponton, A critical cosmological constant from millimeter extra dimensions, JHEP 09 (2000) 012 [hep-th/0003067] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. C.P. Burgess, R.C. Myers and F. Quevedo, A naturally small cosmological constant on the brane?, Phys. Lett. B 495 (2000) 384 [hep-th/9911164] [SPIRES].

    ADS  Google Scholar 

  28. N. Arkani-Hamed, S. Dimopoulos, N. Kaloper and R. Sundrum, A small cosmological constant from a large extra dimension, Phys. Lett. B 480 (2000) 193 [hep-th/0001197] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. S. Kachru, M.B. Schulz and E. Silverstein, Self-tuning flat domain walls in 5D gravity and string theory, Phys. Rev. D 62 (2000) 045021 [hep-th/0001206] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  30. S. Dimopoulos, S. Kachru, N. Kaloper, A.E. Lawrence and E. Silverstein, Small numbers from tunneling between brane throats, Phys. Rev. D 64 (2001) 121702 [hep-th/0104239] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. S.M. Carroll and M.M. Guica, Sidestepping the cosmological constant with football-shaped extra dimensions, hep-th/0302067 [SPIRES].

  32. I. Navarro, Codimension two compactifications and the cosmological constant problem, JCAP 09 (2003) 004 [hep-th/0302129] [SPIRES].

    ADS  Google Scholar 

  33. C.P. Burgess, P. Grenier and D. Hoover, Quintessentially flat scalar potentials, JCAP 03 (2004) 008 [hep-ph/0308252] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  34. H. Nishino and E. Sezgin, Matter and gauge couplings of N = 2 supergravity in six dimensions, Phys. Lett. B 144 (1984) 187 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. H. Nishino and E. Sezgin, The complete N = 2, D = 6 supergravity with matter and Yang-Mills couplings, Nucl. Phys. B 278 (1986) 353 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. S. Randjbar-Daemi, A. Salam, E. Sezgin and J.A. Strathdee, An anomaly free model in six-dimensions, Phys. Lett. B 151 (1985) 351 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  37. A. Salam and E. Sezgin, Chiral compactification on Minkowski x S 2 of N = 2 Einstein-Maxwell supergravity in six-dimensions, Phys. Lett. B 147 (1984) 47 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. Y. Aghababaie, C.P. Burgess, S.L. Parameswaran and F. Quevedo, SUSY breaking and moduli stabilization from fluxes in gauged 6D supergravity, JHEP 03 (2003) 032 [hep-th/0212091] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. C.P. Burgess, S.L. Parameswaran and I. Zavala, The fate of unstable gauge flux compactifications, JHEP 05 (2009) 008 [arXiv:0812.3902] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. G.W. Gibbons, R. Güven and C.N. Pope, 3-branes and uniqueness of the Salam-Sezgin vacuum, Phys. Lett. B 595 (2004) 498 [hep-th/0307238] [SPIRES].

    ADS  Google Scholar 

  41. Y. Aghababaie et al., Warped brane worlds in six dimensional supergravity, JHEP 09 (2003) 037 [hep-th/0308064] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. C.P. Burgess, F. Quevedo, G. Tasinato and I. Zavala, General axisymmetric solutions and self-tuning in 6D chiral gauged supergravity, JHEP 11 (2004) 069 [hep-th/0408109] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. A.J. Tolley, C.P. Burgess, D. Hoover and Y. Aghababaie, Bulk singularities and the effective cosmological constant for higher co-dimension branes, JHEP 03 (2006) 091 [hep-th/0512218] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. A.J. Tolley, C.P. Burgess, C. de Rham and D. Hoover, Scaling solutions to 6D gauged chiral supergravity, New J. Phys. 8 (2006) 324 [hep-th/0608083] [SPIRES].

    Article  ADS  Google Scholar 

  45. A.J. Tolley, C.P. Burgess, C. de Rham and D. Hoover, Exact wave solutions to 6D gauged chiral supergravity, JHEP 07 (2008) 075 [arXiv:0710.3769] [SPIRES].

    Article  ADS  Google Scholar 

  46. M. Minamitsuji, Instability of brane cosmological solutions with flux compactifications, Class. Quant. Grav. 25 (2008) 075019 [arXiv:0801.3080] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. H.M. Lee and A. Papazoglou, Codimension-2 brane inflation, Phys. Rev. D 80 (2009) 043506 [arXiv:0901.4962] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  48. S.L. Parameswaran, G. Tasinato and I. Zavala, The 6D SuperSwirl, Nucl. Phys. B 737 (2006) 49 [hep-th/0509061] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. H.M. Lee and C. Lüdeling, The general warped solution with conical branes in six-dimensional supergravity, JHEP 01 (2006) 062 [hep-th/0510026] [SPIRES].

    Article  ADS  Google Scholar 

  50. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  51. K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. C.P. Burgess and L. van Nierop, Bulk axions, brane back-reaction and fluxes, JHEP 02 (2011) 094 [arXiv:1012.2638] [SPIRES].

    Article  ADS  Google Scholar 

  53. H.M. Lee and A. Papazoglou, Scalar mode analysis of the warped Salam-Sezgin model, Nucl. Phys. B 747 (2006) 294 [Erratum ibid. B 765 (2007) 200] [hep-th/0602208] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  54. C.P. Burgess, C. de Rham, D. Hoover, D. Mason and A.J. Tolley, Kicking the rugby ball: perturbations of 6D gauged chiral supergravity, JCAP 02 (2007) 009 [hep-th/0610078] [SPIRES].

    ADS  Google Scholar 

  55. S.L. Parameswaran, S. Randjbar-Daemi and A. Salvio, Gauge fields, fermions and mass gaps in 6D brane worlds, Nucl. Phys. B 767 (2007) 54 [hep-th/0608074] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. S.L. Parameswaran, S. Randjbar-Daemi and A. Salvio, Stability and negative tensions in 6D brane worlds, JHEP 01 (2008) 051 [arXiv:0706.1893] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. S.L. Parameswaran, S. Randjbar-Daemi and A. Salvio, General perturbations for braneworld compactifications and the six dimensional case, JHEP 03 (2009) 136 [arXiv:0902.0375] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. J. Khoury and A. Weltman, Chameleon cosmology, Phys. Rev. D 69 (2004) 044026 [astro-ph/0309411] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  59. S. Weinberg, Gravitation and cosmology, Wiley, U.S.A. (1973).

    Google Scholar 

  60. C.W. Misner, J.A. Wheeler and K.S. Thorne, Gravitation, W.H. Freeman & Company, U.S.A. (1973) [SPIRES].

    Google Scholar 

  61. A. Vilenkin, Gravitational field of vacuum domain walls and strings, Phys. Rev. D 23 (1981) 852 [SPIRES].

    ADS  Google Scholar 

  62. R. Gregory, Gravitational stability of local strings, Phys. Rev. Lett. 59 (1987) 740 [SPIRES].

    Article  ADS  Google Scholar 

  63. A.G. Cohen and D.B. Kaplan, The exact metric about global cosmic strings, Phys. Lett. B 215 (1988) 67 [SPIRES].

    ADS  Google Scholar 

  64. A. Vilenkin and P. Shellard, Cosmic strings and other topological defects, Cambridge University Press, Cambridge U.K. (1994) [SPIRES].

    MATH  Google Scholar 

  65. R. Gregory and C. Santos, Cosmic strings in dilaton gravity, Phys. Rev. D 56 (1997) 1194 [gr-qc/9701014] [SPIRES].

    ADS  Google Scholar 

  66. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [SPIRES].

    Article  ADS  Google Scholar 

  67. W.D. Goldberger and M.B. Wise, Renormalization group flows for brane couplings, Phys. Rev. D 65 (2002) 025011 [hep-th/0104170] [SPIRES].

    ADS  Google Scholar 

  68. E. Dudas, C. Papineau and V.A. Rubakov, Flowing to four dimensions, JHEP 03 (2006) 085 [hep-th/0512276] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  69. C. de Rham, The effective field theory of codimension-two branes, JHEP 01 (2008) 060 [arXiv:0707.0884] [SPIRES].

    Article  Google Scholar 

  70. C.P. Burgess, D. Hoover and G. Tasinato, UV caps and modulus stabilization for 6D gauged chiral supergravity, JHEP 09 (2007) 124 [arXiv:0705.3212] [SPIRES].

    Article  ADS  Google Scholar 

  71. C.P. Burgess, D. Hoover, C. de Rham and G. Tasinato, Effective field theories and matching for codimension-2 branes, JHEP 03 (2009) 124 [arXiv:0812.3820] [SPIRES].

    Article  ADS  Google Scholar 

  72. P. Bostock, R. Gregory, I. Navarro and J. Santiago, Einstein gravity on the codimension 2 brane?, Phys. Rev. Lett. 92 (2004) 221601 [hep-th/0311074] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  73. I. Navarro and J. Santiago, Gravity on codimension 2 brane worlds, JHEP 02 (2005) 007 [hep-th/0411250] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  74. J. Vinet and J.M. Cline, Codimension-two branes in six-dimensional supergravity and the cosmological constant problem, Phys. Rev. D 71 (2005) 064011 [hep-th/0501098] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  75. M. Peloso, L. Sorbo and G. Tasinato, Standard 4D gravity on a brane in six dimensional flux compactifications, Phys. Rev. D 73 (2006) 104025 [hep-th/0603026] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  76. B. Himmetoglu and M. Peloso, Isolated Minkowski vacua and stability analysis for an extended brane in the rugby ball, Nucl. Phys. B 773 (2007) 84 [hep-th/0612140] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  77. B. Himmetoglu and M. Peloso, Isolated Minkowski vacua and stability analysis for an extended brane in the rugby ball, Nucl. Phys. B 773 (2007) 84 [hep-th/0612140] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  78. C. de Rham, The effective field theory of codimension-two branes, JHEP 01 (2008) 060 [arXiv:0707.0884] [SPIRES].

    Article  Google Scholar 

  79. E. Papantonopoulos, A. Papazoglou and V. Zamarias, Regularization of conical singularities in warped six-dimensional compactifications, JHEP 03 (2007) 002 [hep-th/0611311] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  80. E. Papantonopoulos, A. Papazoglou and V. Zamarias, Induced cosmology on a regularized brane in six-dimensional flux compactification, Nucl. Phys. B 797 (2008) 520 [arXiv:0707.1396] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  81. D. Yamauchi and M. Sasaki, Brane world in arbitrary dimensions without Z 2 symmetry, Prog. Theor. Phys. 118 (2007) 245 [arXiv:0705.2443] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  82. N. Kaloper and D. Kiley, Charting the landscape of modified gravity, JHEP 05 (2007) 045 [hep-th/0703190] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  83. M. Minamitsuji and D. Langlois, Cosmological evolution of regularized branes in 6D warped flux compactifications, Phys. Rev. D 76 (2007) 084031 [arXiv:0707.1426] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  84. S.A. Appleby and R.A. Battye, Regularized braneworlds of arbitrary codimension, Phys. Rev. D 76 (2007) 124009 [arXiv:0707.4238] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  85. C. Bogdanos, A. Kehagias and K. Tamvakis, Pseudo-3-branes in a curved 6D bulk, Phys. Lett. B 656 (2007) 112 [arXiv:0709.0873] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  86. O. Corradini, K. Koyama and G. Tasinato, Induced gravity on intersecting brane-worlds part I: maximally symmetric solutions, Phys. Rev. D 77 (2008) 084006 [arXiv:0712.0385] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  87. O. Corradini, K. Koyama and G. Tasinato, Induced gravity on intersecting brane-worlds part II: cosmology, Phys. Rev. D 78 (2008) 124002 [arXiv:0803.1850] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  88. F. Arroja, T. Kobayashi, K. Koyama and T. Shiromizu, Low energy effective theory on a regularized brane in 6D gauged chiral supergravity, JCAP 12 (2007) 006 [arXiv:0710.2539] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  89. V. Dzhunushaliev, V. Folomeev and M. Minamitsuji, Thick brane solutions, Rept. Prog. Phys. 73 (2010) 066901 [arXiv:0904.1775] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  90. A. Bayntun, C.P. Burgess and L. van Nierop, Codimension-2 brane-bulk matching: examples from six and ten dimensions, New J. Phys. 12 (2010) 075015 [arXiv:0912.3039] [SPIRES].

    Article  ADS  Google Scholar 

  91. G.W. Gibbons and C.N. Pope, Consistent S 2 Pauli reduction of six-dimensional chiral gauged Einstein-Maxwell supergravity, Nucl. Phys. B 697 (2004) 225 [hep-th/0307052] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  92. C.P. Burgess, Introduction to effective field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 329 [hep-th/0701053] [SPIRES].

    Article  ADS  Google Scholar 

  93. C.P. Burgess, Quantum gravity in everyday life: general relativity as an effective field theory, Living Rev. Rel. 7 (2004) 5 [gr-qc/0311082] [SPIRES].

    Google Scholar 

  94. C.P. Burgess and D. London, Uses and abuses of effective Lagrangians, Phys. Rev. D 48 (1993) 4337 [hep-ph/9203216] [SPIRES].

    ADS  Google Scholar 

  95. J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  96. B.S. De Witt, Dynamical theory of groups and fields, in Relativity, groups and topology, B.S. De Witt and C. De Witt eds., Gordon and Breach, New York U.S.A. (1965) [SPIRES].

    Google Scholar 

  97. P.B. Gilkey, The spectral geometry of a Riemannian manifold, J. Diff. Geom. 10 (1975) 601 [SPIRES].

    MathSciNet  MATH  Google Scholar 

  98. D.M. McAvity and H. Osborn, A Dewitt expansion of the heat kernel for manifolds with a boundary, Class. Quant. Grav. 8 (1991) 603 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  99. D. Hoover and C.P. Burgess, Ultraviolet sensitivity in higher dimensions, JHEP 01 (2006) 058 [hep-th/0507293] [SPIRES].

    Article  ADS  Google Scholar 

  100. C.P. Burgess and D. Hoover, UV sensitivity in supersymmetric large extra dimensions: the Ricci-flat case, Nucl. Phys. B 772 (2007) 175 [hep-th/0504004] [SPIRES].

    Article  ADS  Google Scholar 

  101. A.O. Barvinsky and G.A. Vilkovisky, The generalized Schwinger-Dewitt technique in gauge theories and quantum gravity, Phys. Rept. 119 (1985) 1 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  102. D.V. Vassilevich, Heat kernel expansion: user’s manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  103. E. Witten, New ‘gauge’ theories in six dimensions, JHEP 01 (1998) 001 [Adv. Theor. Math. Phys. 2 (1998) 61] [hep-th/9710065] [SPIRES].

    Article  ADS  Google Scholar 

  104. A. Hanany and A. Zaffaroni, Branes and six dimensional supersymmetric theories, Nucl. Phys. B 529 (1998) 180 [hep-th/9712145] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  105. M. Alishahiha and Y. Oz, Supergravity and ‘new’ six-dimensional gauge theories, Phys. Lett. B 495 (2000) 418 [hep-th/0008172] [SPIRES].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. van Nierop.

Additional information

ArXiv ePrint: 1101.0152

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgess, C.P., van Nierop, L. Large dimensions and small curvatures from supersymmetric brane back-reaction. J. High Energ. Phys. 2011, 78 (2011). https://doi.org/10.1007/JHEP04(2011)078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)078

Keywords

Navigation