(q, t)-KZ equations for quantum toroidal algebra and Nekrasov partition functions on ALE spaces

Abstract

We describe the general strategy for lifting the Wess-Zumino-Witten model from the level of one-loop Kac-Moody \( {U}_q{\left(\widehat{\mathfrak{g}}\right)}_k \) to generic quantum toroidal algebras. A nearly exhaustive presentation is given for both \( {U}_{q,t}\left({\widehat{\widehat{\mathfrak{gl}}}}_1\right) \) and \( {U}_{q,t}\left({\widehat{\widehat{\mathfrak{gl}}}}_n\right) \) when the screenings do not exist and thus all the correlators are purely algebraic, i.e. do not include additional hypergeometric type integrations/summations.

Generalizing the construction of the intertwiner (refined topological vertex) of the Ding-Iohara-Miki (DIM) algebra, we obtain the intertwining operators of the Fock representations of the quantum toroidal algebra of type An. The correlation functions of these operators satisfy the (q, t)-Knizhnik-Zamolodchikov (KZ) equation, which features the ℛ-matrix. The matching with the Nekrasov function for the instanton counting on the ALE space is worked out explicitly.

We also present an important application of the DIM formalism to the study of 6d gauge theories described by the double elliptic integrable systems. We show that the modular and periodicity properties of the gauge theories are neatly explained by the network matrix models providing solutions to the elliptic (q, t)-KZ equations.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  2. [2]

    A. Zamolodchikov and Al. Zamolodchikov, Conformal field theory and critical phenomena in 2d systems, MCCME, Moscow, Russia, (2009), ISBN 978-5-94057-520-7.

  3. [3]

    L. Álvarez-Gaumé, Random surfaces, statistical mechanics and string theory, Helv. Phys. Acta 64 (1991) 359 [INSPIRE].

    MathSciNet  Google Scholar 

  4. [4]

    P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer, (1996).

  5. [5]

    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  6. [6]

    N. Wyllard, A N −1 conformal Toda field theory correlation functions from conformal N = 2 SU(N ) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    A. Mironov and A. Morozov, On AGT relation in the case of U(3), Nucl. Phys. B 825 (2010) 1 [arXiv:0908.2569] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  8. [8]

    H. Awata and H. Kanno, Instanton counting, Macdonald functions and the moduli space of D-branes, JHEP 05 (2005) 039 [hep-th/0502061] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    H. Awata and Y. Yamada, Five-dimensional AGT Conjecture and the Deformed Virasoro Algebra, JHEP 01 (2010) 125 [arXiv:0910.4431] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  10. [10]

    H. Awata and Y. Yamada, Five-dimensional AGT Relation and the Deformed beta-ensemble, Prog. Theor. Phys. 124 (2010) 227 [arXiv:1004.5122] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  11. [11]

    S. Yanagida, Five-dimensional SU(2) AGT conjecture and recursive formula of deformed Gaiotto state, J. Math. Phys. 51 (2010) 123506 [arXiv:1005.0216] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  12. [12]

    H. Awata, H. Fuji, H. Kanno, M. Manabe and Y. Yamada, Localization with a Surface Operator, Irregular Conformal Blocks and Open Topological String, Adv. Theor. Math. Phys. 16 (2012) 725 [arXiv:1008.0574] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  13. [13]

    H. Kanno and Y. Tachikawa, Instanton counting with a surface operator and the chain-saw quiver, JHEP 06 (2011) 119 [arXiv:1105.0357] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  14. [14]

    A. Mironov, A. Morozov, S. Shakirov and A. Smirnov, Proving AGT conjecture as HS duality: extension to five dimensions, Nucl. Phys. B 855 (2012) 128 [arXiv:1105.0948] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  15. [15]

    H. Kanno and M. Taki, Generalized Whittaker states for instanton counting with fundamental hypermultiplets, JHEP 05 (2012) 052 [arXiv:1203.1427] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  16. [16]

    F. Nieri, S. Pasquetti and F. Passerini, 3d and 5d Gauge Theory Partition Functions as q-deformed CFT Correlators, Lett. Math. Phys. 105 (2015) 109 [arXiv:1303.2626] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  17. [17]

    F. Nieri, S. Pasquetti, F. Passerini and A. Torrielli, 5D partition functions, q-Virasoro systems and integrable spin-chains, JHEP 12 (2014) 040 [arXiv:1312.1294] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    M.-C. Tan, An M-Theoretic Derivation of a 5d and 6d AGT Correspondence and Relativistic and Elliptized Integrable Systems, JHEP 12 (2013) 031 [arXiv:1309.4775] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    M.-C. Tan, Higher AGT Correspondences, W-algebras and Higher Quantum Geometric Langlands Duality from M-theory, arXiv:1607.08330 [INSPIRE].

  20. [20]

    H. Itoyama, T. Oota and R. Yoshioka, q-Vertex Operator from 5D Nekrasov Function, J. Phys. A 49 (2016) 345201 [arXiv:1602.01209] [INSPIRE].

  21. [21]

    A. Nedelin and M. Zabzine, q-Virasoro constraints in matrix models, JHEP 03 (2017) 098 [arXiv:1511.03471] [INSPIRE].

  22. [22]

    R. Yoshioka, The integral representation of solutions of KZ equation and a modification by \( \mathcal{K} \) operator insertion, arXiv:1512.01084 [INSPIRE].

  23. [23]

    H. Awata, H. Fujino and Y. Ohkubo, Crystallization of deformed Virasoro algebra, Ding-Iohara-Miki algebra and 5D AGT correspondence, J. Math. Phys. 58 (2017) 071704 [arXiv:1512.08016] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  24. [24]

    S. Pasquetti, Holomorphic blocks and the 5d AGT correspondence, J. Phys. A 50 (2017) 443016 [arXiv:1608.02968] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  25. [25]

    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].

  26. [26]

    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  27. [27]

    A. Gorsky, I. Krichever, A. Marshakov, A. Mironov and A. Morozov, Integrability and Seiberg-Witten exact solution, Phys. Lett. B 355 (1995) 466 [hep-th/9505035] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  28. [28]

    R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B 460 (1996) 299 [hep-th/9510101] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  29. [29]

    E.J. Martinec, Integrable structures in supersymmetric gauge and string theory, Phys. Lett. B 367 (1996) 91 [hep-th/9510204] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    E.J. Martinec and N.P. Warner, Integrability in N = 2 gauge theory: A proof, hep-th/9511052 [INSPIRE].

  31. [31]

    A. Gorsky and A. Mironov, Integrable many body systems and gauge theories, hep-th/0011197 [INSPIRE].

  32. [32]

    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  33. [33]

    R. Flume and R. Poghossian, An algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential, Int. J. Mod. Phys. A 18 (2003) 2541 [hep-th/0208176] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  34. [34]

    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Prog. Math. 244 (2006) 525 [hep-th/0306238] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  35. [35]

    J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    S.P. Novikov, The Hamiltonian formalism and a many valued analog of Morse theory, Usp. Mat. Nauk 37N5 (1982) 3 [INSPIRE].

  37. [37]

    E. Witten, Nonabelian Bosonization in Two-Dimensions, Commun. Math. Phys. 92 (1984) 455 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  38. [38]

    A.M. Polyakov and P.B. Wiegmann, Theory of Nonabelian Goldstone Bosons, Phys. Lett. B 131 (1983) 121 [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    A.M. Polyakov and P.B. Wiegmann, Goldstone Fields in Two-Dimensions with Multivalued Actions, Phys. Lett. B 141 (1984) 223 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. [40]

    B.L. Feigin and D.B. Fuks, Invariant skew symmetric differential operators on the line and verma modules over the Virasoro algebra, Funct. Anal. Appl. 16 (1982) 114 [INSPIRE].

    MATH  Article  Google Scholar 

  41. [41]

    V.S. Dotsenko and V.A. Fateev, Conformal Algebra and Multipoint Correlation Functions in Two-Dimensional Statistical Models, Nucl. Phys. B 240 (1984) 312 [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    M. Wakimoto, Fock representations of the affine lie algebra A1(1), Commun. Math. Phys. 104 (1986) 605 [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  43. [43]

    A. Gerasimov, A. Morozov, M. Olshanetsky, A. Marshakov and S.L. Shatashvili, Wess-Zumino-Witten model as a theory of free fields, Int. J. Mod. Phys. A 5 (1990) 2495 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  44. [44]

    V.S. Dotsenko, The Free Field Representation of the SU(2) Conformal Field Theory, Nucl. Phys. B 338 (1990) 747 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  45. [45]

    V.S. Dotsenko, Solving the SU(2) conformal field theory with the Wakimoto free field representation, Nucl. Phys. B 358 (1991) 547 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  46. [46]

    B. Feigin and E. Frenkel, Quantization of the Drinfeld-Sokolov reduction, Phys. Lett. B 246 (1990) 75 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  47. [47]

    A. Mironov, A. Morozov and S. Shakirov, Matrix Model Conjecture for Exact BS Periods and Nekrasov Functions, JHEP 02 (2010) 030 [arXiv:0911.5721] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  48. [48]

    A. Mironov, A. Morozov and S. Shakirov, Conformal blocks as Dotsenko-Fateev Integral Discriminants, Int. J. Mod. Phys. A 25 (2010) 3173 [arXiv:1001.0563] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  49. [49]

    A. Mironov, A. Morozov and S. Shakirov, Brezin-Gross-Witten model as ‘pure gauge’ limit of Selberg integrals, JHEP 03 (2011) 102 [arXiv:1011.3481] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  50. [50]

    A. Morozov and Y. Zenkevich, Decomposing Nekrasov Decomposition, JHEP 02 (2016) 098 [arXiv:1510.01896] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  51. [51]

    A. Mironov, A. Morozov and Y. Zenkevich, On elementary proof of AGT relations from six dimensions, Phys. Lett. B 756 (2016) 208 [arXiv:1512.06701] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  52. [52]

    A. Mironov, A. Morozov and Y. Zenkevich, Spectral duality in elliptic systems, six-dimensional gauge theories and topological strings, JHEP 05 (2016) 121 [arXiv:1603.00304] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  53. [53]

    A. Mironov, A. Morozov and Y. Zenkevich, Ding-Iohara-Miki symmetry of network matrix models, Phys. Lett. B 762 (2016) 196 [arXiv:1603.05467] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  54. [54]

    H. Awata et al., Explicit examples of DIM constraints for network matrix models, JHEP 07 (2016) 103 [arXiv:1604.08366] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  55. [55]

    H. Awata et al., Toric Calabi-Yau threefolds as quantum integrable systems.-matrix and \( \mathrm{\mathcal{R}}\mathcal{T}\mathcal{T} \) relations, JHEP 10 (2016) 047 [arXiv:1608.05351] [INSPIRE].

  56. [56]

    H. Awata et al., Anomaly in RTT relation for DIM algebra and network matrix models, Nucl. Phys. B 918 (2017) 358 [arXiv:1611.07304] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  57. [57]

    H. Awata et al., Generalized Knizhnik-Zamolodchikov equation for Ding-Iohara-Miki algebra, Phys. Rev. D 96 (2017) 026021 [arXiv:1703.06084] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  58. [58]

    J.-E. Bourgine, Y. Matsuo and H. Zhang, Holomorphic field realization of SH c and quantum geometry of quiver gauge theories, JHEP 04 (2016) 167 [arXiv:1512.02492] [INSPIRE].

    ADS  Google Scholar 

  59. [59]

    J.-E. Bourgine, M. Fukuda, Y. Matsuo, H. Zhang and R.-D. Zhu, Coherent states in quantum \( {\mathcal{W}}_{1+\infty } \) algebra and qq-character for 5d Super Yang-Mills, PTEP 2016 (2016) 123B05 [arXiv:1606.08020] [INSPIRE].

  60. [60]

    J.-E. Bourgine, M. Fukuda, K. Harada, Y. Matsuo and R.-D. Zhu, (p,q)-webs of DIM representations, 5d N = 1 instanton partition functions and qq-characters, JHEP 11 (2017) 034 [arXiv:1703.10759] [INSPIRE].

  61. [61]

    M. Fukuda, K. Harada, Y. Matsuo and R.-D. Zhu, The Maulik-Okounkov R-matrix from the Ding-Iohara-Miki algebra, PTEP 2017 (2017) 093A01 [arXiv:1705.02941] [INSPIRE].

  62. [62]

    J.-E. Bourgine, M. Fukuda, Y. Matsuo and R.-D. Zhu, Reflection states in Ding-Iohara-Miki algebra and brane-web for D-type quiver, JHEP 12 (2017) 015 [arXiv:1709.01954] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  63. [63]

    T. Kimura and V. Pestun, Quiver W-algebras, arXiv:1512.08533 [INSPIRE].

  64. [64]

    T. Kimura and V. Pestun, Quiver elliptic W-algebras, arXiv:1608.04651 [INSPIRE].

  65. [65]

    T. Kimura and V. Pestun, Fractional quiver W-algebras, arXiv:1705.04410 [INSPIRE].

  66. [66]

    A. Okounkov, Lectures on K-theoretic computations in enumerative geometry, arXiv:1512.07363 [INSPIRE].

  67. [67]

    A. Okounkov and A. Smirnov, Quantum difference equation for Nakajima varieties, arXiv:1602.09007 [INSPIRE].

  68. [68]

    A. Smirnov, Rationality of capped descendent vertex in K-theory, arXiv:1612.01048 [INSPIRE].

  69. [69]

    J. Ding and K. Iohara, Generalization of Drinfeld quantum affine algebras, Lett. Math. Phys. 41 (1997) 181 [q-alg/9608002].

  70. [70]

    K. Miki, A (q, γ) analog of the W 1+∞ algebra, J. Math. Phys. 48 (2007) 123520.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  71. [71]

    B. Feigin and A. Tsymbaliuk, Heisenberg action in the equivariant K-theory of Hilbert schemes via Shuffle Algebra, Kyoto J. Math. 51 (2011) 831 [arXiv:0904.1679].

    MathSciNet  MATH  Article  Google Scholar 

  72. [72]

    B. Feigin, E. Feigin, M. Jimbo, T. Miwa and E. Mukhin, Quantum continuous \( \mathfrak{g}{\mathfrak{l}}_{\infty } \) : Semi-infinite construction of representations, Kyoto J. Math. 51 (2011) 337 [arXiv:1002.3100].

  73. [73]

    B. Feigin, K. Hashizume, A. Hoshino, J. Shiraishi and S. Yanagida, A commutative algebra on degenerate CP 1 and Macdonald polynomials, J. Math. Phys. 50 (2009) 095215 [arXiv:0904.2291].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  74. [74]

    B. Feigin, A. Hoshino, J. Shibahara, J. Shiraishi and S. Yanagida, Kernel function and quantum algebras, arXiv:1002.2485.

  75. [75]

    B. Feigin, E. Feigin, M. Jimbo, T. Miwa and E. Mukhin, Quantum continuous \( \mathfrak{g}{\mathfrak{l}}_{\infty } \) : Tensor products of Fock modules and W n characters, arXiv:1002.3113 [INSPIRE].

  76. [76]

    H. Awata, B. Feigin, A. Hoshino, M. Kanai, J. Shiraishi and S. Yanagida, Notes on Ding-Iohara algebra and AGT conjecture, RIMS Kōkyūroku 1765 (2011) 12.

  77. [77]

    H. Awata, B. Feigin, A. Hoshino, M. Kanai, J. Shiraishi and S. Yanagida, Notes on Ding-Iohara algebra and AGT conjecture, arXiv:1106.4088 [INSPIRE].

  78. [78]

    B. Feigin, M. Jimbo, T. Miwa and E. Mukhin, Quantum toroidal \( \mathfrak{g}{\mathfrak{l}}_1 \) algebra: plane partitions, Kyoto J. Math. 52 (2012) 621 [arXiv:1110.5310].

  79. [79]

    B. Feigin, M. Jimbo, T. Miwa and E. Mukhin, Quantum toroidal \( \mathfrak{g}{\mathfrak{l}}_1 \) and Bethe ansatz, J. Phys. A 48 (2015) 244001 [arXiv:1502.07194] [INSPIRE].

  80. [80]

    H. Awata, B. Feigin and J. Shiraishi, Quantum Algebraic Approach to Refined Topological Vertex, JHEP 03 (2012) 041 [arXiv:1112.6074] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  81. [81]

    B. Feigin, M. Jimbo, T. Miwa and E. Mukhin, Representations of quantum toroidal \( \mathfrak{g}{\mathfrak{l}}_n \) J. Algebra 380 (2013) 78 [arXiv:1204.5378].

  82. [82]

    B. Feigin, M. Jimbo, T. Miwa and E. Mukhin, Branching rules for quantum toroidal \( \mathfrak{g}{\mathfrak{l}}_n \), Adv. Math. 300 (2016) 229 [arXiv:1309.2147] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  83. [83]

    B. Feigin, M. Jimbo, T. Miwa and E. Mukhin, Finite Type Modules and Bethe Ansatz for Quantum Toroidal \( \mathfrak{g}{\mathfrak{l}}_1 \), Commun. Math. Phys. 356 (2017) 285 [arXiv:1603.02765] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  84. [84]

    B. Feigin, M. Jimbo and E. Mukhin, Integrals of motion from quantum toroidal algebras, J. Phys. A 50 (2017) 464001 [arXiv:1705.07984] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  85. [85]

    G. Aminov, A. Mironov and A. Morozov, Modular properties of 6d (DELL) systems, JHEP 11 (2017) 023 [arXiv:1709.04897] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  86. [86]

    V.G. Knizhnik and A.B. Zamolodchikov, Current Algebra and Wess-Zumino Model in Two-Dimensions, Nucl. Phys. B 247 (1984) 83 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  87. [87]

    P.I. Etingof, I.B. Frenkel and A.A. Kirillov Jr., Lectures on Representation Theory and Knizhnik-Zamolodchikov Equations, Mathematical surveys and monographs 58, AMS (1998).

  88. [88]

    I.B. Frenkel and N. Yu. Reshetikhin, Quantum affine algebras and holonomic difference equations, Commun. Math. Phys. 146 (1992) 1 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  89. [89]

    D. Bernard, On the Wess-Zumino-Witten Models on the Torus, Nucl. Phys. B 303 (1988) 77 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  90. [90]

    D. Bernard, On the Wess-Zumino-Witten Models on Riemann Surfaces, Nucl. Phys. B 309 (1988) 145 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  91. [91]

    G. Felder and A. Varchenko, Integral representation of solutions of the elliptic Knizhnik-Zamolodchikov-Bernard equations, Int. Math. Res. Not. (1995) 221 [hep-th/9502165] [INSPIRE].

  92. [92]

    P. Etingof and A. Varchenko, Traces of intertwiners for quantum groups and difference equations, I, math/9907181.

  93. [93]

    P. Etingof and A. Varchenko, The orthogonality and qKZB-heat equation for traces of U q (g)-intertwiners, math/0302071.

  94. [94]

    P. Etingof, O. Schiffmann and A. Varchenko, Traces of intertwiners for quantum groups and difference equations, II, math/0207157.

  95. [95]

    Y. Sun, Traces of intertwiners for quantum affine algebras and difference equations (after Etingof-Schiffmann-Varchenko), arXiv:1609.09038.

  96. [96]

    V.V. Schechtman and A.N. Varchenko, Hypergeometric solutions of Knizhnik-Zamolodchikov equations, Lett. Math. Phys. 20 (1990) 279 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  97. [97]

    V. Schechtman and A. Varchenko, Arrangements of Hyperplanes and Lie Algebra Homology, Invent. Math. 106 (1991) 139.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  98. [98]

    H. Awata, A. Tsuchiya and Y. Yamada, Integral formulas for the WZNW correlation functions, Nucl. Phys. B 365 (1991) 680 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  99. [99]

    H. Awata, Screening currents ward identity and integral formulas for the WZNW correlation functions, Prog. Theor. Phys. Suppl. 110 (1992) 303 [hep-th/9202032] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  100. [100]

    H. Awata, S. Odake and J. Shiraishi, Nagoya Repository, http://hdl.handle.net/2237/25736, (1993).

  101. [101]

    G. Felder, V. Tarasov and A. Varchenko, Solutions of the elliptic qKZB equations and Bethe ansatz, Am. Math. Soc. Transl. 180 (1997) 45.

    MathSciNet  MATH  Article  Google Scholar 

  102. [102]

    G. Felder, V. Tarasov and A. Varchenko, Monodromy of solutions of the elliptic quantum Knizhnik-Zamolodchikov-Bernard difference equations, Int. J. Math. 10 (1999) 943 [q-alg/9705017].

  103. [103]

    G. Felder and A. Varchenko, The q-deformed Knizhnik-Zamolodchikov-Bernard heat equation, Comm. Math. Phys. 221 (2001) 549 [math/9809139].

  104. [104]

    H.W. Braden, A. Marshakov, A. Mironov and A. Morozov, On double elliptic integrable systems. 1. A duality argument for the case of SU(2), Nucl. Phys. B 573 (2000) 553 [hep-th/9906240] [INSPIRE].

  105. [105]

    A. Mironov and A. Morozov, Commuting Hamiltonians from Seiberg-Witten theta functions, Phys. Lett. B 475 (2000) 71 [hep-th/9912088] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  106. [106]

    A. Mironov and A. Morozov, Double elliptic systems: Problems and perspectives, in Proceedings, International Workshop on Supersymmetries and Quantum Symmetries (SQS’99): Moscow, Russia, July 27-31, 1999, hep-th/0001168 [INSPIRE].

  107. [107]

    G. Aminov, A. Mironov, A. Morozov and A. Zotov, Three-particle Integrable Systems with Elliptic Dependence on Momenta and Theta Function Identities, Phys. Lett. B 726 (2013) 802 [arXiv:1307.1465] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  108. [108]

    G. Aminov, H.W. Braden, A. Mironov, A. Morozov and A. Zotov, Seiberg-Witten curves and double-elliptic integrable systems, JHEP 01 (2015) 033 [arXiv:1410.0698] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  109. [109]

    G. Aminov, A. Mironov and A. Morozov, New non-linear equations and modular form expansion for double-elliptic Seiberg-Witten prepotential, Eur. Phys. J. C 76 (2016) 433 [arXiv:1606.05274] [INSPIRE].

    ADS  Article  Google Scholar 

  110. [110]

    H. Nakajima, Instantons on ALE spaces, quiver varieties and Kac-Moody algebras, Duke Math. J. 76 (1994) 365 [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  111. [111]

    H. Nakajima, Quiver varieties and finite dimensional representations of quantum affine algebras, J. Am. Math. Soc. 14 (2001) 145 [math/9912158].

  112. [112]

    V. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (1985) 1060.

    MathSciNet  Google Scholar 

  113. [113]

    M. Jimbo, A q difference analog of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985) 63 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  114. [114]

    M. Jimbo, A q Analog of \( \mathrm{U}\left(\mathfrak{g}{\mathfrak{l}}_{N+1}\right) \) , Hecke Algebra and the Yang-Baxter Equation, Lett. Math. Phys. 11 (1986) 247 [INSPIRE].

  115. [115]

    M. Jimbo, Quantum R Matrix for the Generalized Toda System, Commun. Math. Phys. 102 (1986) 537 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  116. [116]

    V.G. Drinfeld, A new realization of Yangians and quantum affine algebras, Sov. Math. Dokl. 36 (1988) 212.

    MathSciNet  Google Scholar 

  117. [117]

    M. Varagnolo and E. Vasserot, Double-loop algebras and the Fock space, Invent. Math. 133 (1998) 133 [q-alg/9612035].

  118. [118]

    M. Varagnolo and E. Vasserot, On the K-theory of the cyclic quiver variety, Math. Res. Lett. 18 (1999) 1005 [math/9902091].

  119. [119]

    K. Nagao, Quiver varieties and Frenkel-Kac construction, J. Algebra 321 (2009) 3764 [math/0703107].

  120. [120]

    K. Nagao, K-theory of quiver varieties, q-Fock space and nonsymmetric Macdonald polynomials, Osaka J. Math. 46 (2009) 877 [arXiv:0709.1767].

    MathSciNet  MATH  Google Scholar 

  121. [121]

    A. Negut, Quantum Algebras and Cyclic Quiver Varieties, arXiv:1504.06525.

  122. [122]

    Y. Saito, Quantum toroidal algebras and their vertex representations, Publ. Res. Inst. Math. Sci. Kyoto 34 (1998) 155 [q-alg/9611030].

  123. [123]

    Y. Saito, K. Takemura and D. Uglov, Toroidal actions on level 1 modules of \( {U}_q\left(s{\widehat{l}}_n\right) \), Transform. Groups 3 (1998) 75 [q-alg/9702024].

  124. [124]

    M. Taki, Refined Topological Vertex and Instanton Counting, JHEP 03 (2008) 048 [arXiv:0710.1776] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  125. [125]

    H. Awata and H. Kanno, Refined BPS state counting from Nekrasov’s formula and Macdonald functions, Int. J. Mod. Phys. A 24 (2009) 2253 [arXiv:0805.0191] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  126. [126]

    A. Marshakov, A. Mironov and A. Morozov, Generalized matrix models as conformal field theories: Discrete case, Phys. Lett. B 265 (1991) 99 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  127. [127]

    A. Mironov and S. Pakulyak, On the continuum limit of the conformal matrix models, Theor. Math. Phys. 95 (1993) 604 [hep-th/9209100] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  128. [128]

    S. Kharchev, A. Marshakov, A. Mironov, A. Morozov and S. Pakuliak, Conformal matrix models as an alternative to conventional multimatrix models, Nucl. Phys. B 404 (1993) 717 [hep-th/9208044] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  129. [129]

    H. Awata, Y. Matsuo, S. Odake and J. Shiraishi, Collective field theory, Calogero-Sutherland model and generalized matrix models, Phys. Lett. B 347 (1995) 49 [hep-th/9411053] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  130. [130]

    H. Awata, Y. Matsuo, S. Odake and J. Shiraishi, Excited states of Calogero-Sutherland model and singular vectors of the W(N) algebra, Nucl. Phys. B 449 (1995) 347 [hep-th/9503043] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  131. [131]

    H. Awata, Y. Matsuo, S. Odake and J. Shiraishi, A note on Calogero-Sutherland model, W(n) singular vectors and generalized matrix models, Soryushiron Kenkyu 91 (1995) A69 [hep-th/9503028] [INSPIRE].

    MATH  Google Scholar 

  132. [132]

    R. Dijkgraaf and C. Vafa, Toda Theories, Matrix Models, Topological Strings and N = 2 Gauge Systems, arXiv:0909.2453 [INSPIRE].

  133. [133]

    H. Itoyama, K. Maruyoshi and T. Oota, The Quiver Matrix Model and 2d-4d Conformal Connection, Prog. Theor. Phys. 123 (2010) 957 [arXiv:0911.4244] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  134. [134]

    T. Eguchi and K. Maruyoshi, Penner Type Matrix Model and Seiberg-Witten Theory, JHEP 02 (2010) 022 [arXiv:0911.4797] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  135. [135]

    T. Eguchi and K. Maruyoshi, Seiberg-Witten theory, matrix model and AGT relation, JHEP 07 (2010) 081 [arXiv:1006.0828] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  136. [136]

    R. Schiappa and N. Wyllard, An A(r) threesome: Matrix models, 2d CFTs and 4d N = 2 gauge theories, J. Math. Phys. 51 (2010) 082304 [arXiv:0911.5337] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  137. [137]

    P. Sulkowski, Matrix models for beta-ensembles from Nekrasov partition functions, JHEP 04 (2010) 063 [arXiv:0912.5476] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  138. [138]

    H. Itoyama and T. Oota, Method of Generating q-Expansion Coefficients for Conformal Block and N = 2 Nekrasov Function by beta-Deformed Matrix Model, Nucl. Phys. B 838 (2010) 298 [arXiv:1003.2929] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  139. [139]

    A. Mironov, A. Morozov and A. Morozov, Conformal blocks and generalized Selberg integrals, Nucl. Phys. B 843 (2011) 534 [arXiv:1003.5752] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  140. [140]

    F. Fucito, J.F. Morales and R. Poghossian, Multi instanton calculus on ALE spaces, Nucl. Phys. B 703 (2004) 518 [hep-th/0406243] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  141. [141]

    S. Fujii and S. Minabe, A combinatorial study on quiver varieties, SIGMA 13 (2017) 052 [math/0510455] [INSPIRE].

  142. [142]

    K. Takemura and D. Uglov, The orthogonal eigenbasis and norms of eigenvectors in the Spin Calogero-Sutherland Model, J. Phys. A 30 (1997) 3685 [solv-int/9611006].

  143. [143]

    D. Uglov, Yangian Gelfand-Zetlin bases, \( \mathfrak{g}{\mathfrak{l}}_N \) Jack polynomials and computation of dynamical correlation functions in the spin Calogero-Sutherland model, Commun. Math. Phys. 193 (1998) 663 [hep-th/9702020] [INSPIRE].

  144. [144]

    V. Belavin and B. Feigin, Super Liouville conformal blocks from N = 2 SU(2) quiver gauge theories, JHEP 07 (2011) 079 [arXiv:1105.5800] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  145. [145]

    T. Nishioka and Y. Tachikawa, Central charges of para-Liouville and Toda theories from M-5-branes, Phys. Rev. D 84 (2011) 046009 [arXiv:1106.1172] [INSPIRE].

    ADS  Google Scholar 

  146. [146]

    A.A. Belavin, M.A. Bershtein, B.L. Feigin, A.V. Litvinov and G.M. Tarnopolsky, Instanton moduli spaces and bases in coset conformal field theory, Commun. Math. Phys. 319 (2013) 269 [arXiv:1111.2803] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  147. [147]

    A.A. Belavin, M.A. Bershtein and G.M. Tarnopolsky, Bases in coset conformal field theory from AGT correspondence and Macdonald polynomials at the roots of unity, JHEP 03 (2013) 019 [arXiv:1211.2788] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  148. [148]

    H. Itoyama, T. Oota and R. Yoshioka, 2d-4d Connection between q-Virasoro/W Block at Root of Unity Limit and Instanton Partition Function on ALE Space, Nucl. Phys. B 877 (2013) 506 [arXiv:1308.2068] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  149. [149]

    H. Itoyama, T. Oota and R. Yoshioka, q-Virasoro/W Algebra at Root of Unity and Parafermions, Nucl. Phys. B 889 (2014) 25 [arXiv:1408.4216] [INSPIRE].

  150. [150]

    M. Jimbo, Topics from Representations of U q (g). An Introductory Guide to Physicists, Nankai Lectures on Mathematical Physics, World Scientific, Singapore, (1992), pp. 1-61.

  151. [151]

    E. Mukhin, V. Tarasov and A. Varchenko, Bispectral and \( \left(\mathfrak{g}{\mathfrak{l}}_N,\mathfrak{g}{\mathfrak{l}}_M\right) \) Dualities, math/0510364.

  152. [152]

    E. Mukhin, V. Tarasov and A. Varchenko, Bispectral and ( \( \mathfrak{g}{\mathfrak{l}}_N,\mathfrak{g}{\mathfrak{l}}_M \) ) Dualities, Discrete Versus Differential, Adv. Math. 218 (2008) 216 [math/0605172].

  153. [153]

    A. Mironov, A. Morozov, Y. Zenkevich and A. Zotov, Spectral Duality in Integrable Systems from AGT Conjecture, JETP Lett. 97 (2013) 45 [arXiv:1204.0913] [INSPIRE].

    ADS  Article  Google Scholar 

  154. [154]

    A. Mironov, A. Morozov, B. Runov, Y. Zenkevich and A. Zotov, Spectral Duality Between Heisenberg Chain and Gaudin Model, Lett. Math. Phys. 103 (2013) 299 [arXiv:1206.6349] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  155. [155]

    A. Mironov, A. Morozov, B. Runov, Y. Zenkevich and A. Zotov, Spectral dualities in XXZ spin chains and five dimensional gauge theories, JHEP 12 (2013) 034 [arXiv:1307.1502] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  156. [156]

    L. Bao, E. Pomoni, M. Taki and F. Yagi, M5-Branes, Toric Diagrams and Gauge Theory Duality, JHEP 04 (2012) 105 [arXiv:1112.5228] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  157. [157]

    M. Aganagic, N. Haouzi, C. Kozcaz and S. Shakirov, Gauge/Liouville Triality, arXiv:1309.1687 [INSPIRE].

  158. [158]

    M. Aganagic, N. Haouzi and S. Shakirov, A n -Triality, arXiv:1403.3657 [INSPIRE].

  159. [159]

    M. Aganagic and N. Haouzi, ADE Little String Theory on a Riemann Surface (and Triality), arXiv:1506.04183 [INSPIRE].

  160. [160]

    N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, in Proceedings, 16th International Congress on Mathematical Physics (ICMP09): Prague, Czech Republic, August 3-8, 2009, pp. 265-289, arXiv:0908.4052 [INSPIRE].

  161. [161]

    A. Mironov and A. Morozov, Nekrasov Functions and Exact Bohr-Zommerfeld Integrals, JHEP 04 (2010) 040 [arXiv:0910.5670] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  162. [162]

    A. Mironov and A. Morozov, Nekrasov Functions from Exact BS Periods: The Case of SU(N ), J. Phys. A 43 (2010) 195401 [arXiv:0911.2396] [INSPIRE].

    ADS  MATH  Google Scholar 

  163. [163]

    A. Marshakov, A. Mironov and A. Morozov, On AGT Relations with Surface Operator Insertion and Stationary Limit of Beta-Ensembles, J. Geom. Phys. 61 (2011) 1203 [arXiv:1011.4491] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrei Mironov.

Additional information

ArXiv ePrint: 1712.08016

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Awata, H., Kanno, H., Mironov, A. et al. (q, t)-KZ equations for quantum toroidal algebra and Nekrasov partition functions on ALE spaces. J. High Energ. Phys. 2018, 192 (2018). https://doi.org/10.1007/JHEP03(2018)192

Download citation

Keywords

  • Conformal and W Symmetry
  • Conformal Field Theory
  • Supersymmetric Gauge Theory
  • Topological Strings