Refining the boundaries of the classical de Sitter landscape

An Erratum to this article is available

This article has been updated

Abstract

We derive highly constraining no-go theorems for classical de Sitter backgrounds of string theory, with parallel sources; this should impact the embedding of cosmological models. We study ten-dimensional vacua of type II supergravities with parallel and backreacted orientifold O p -planes and D p -branes, on four-dimensional de Sitter spacetime times a compact manifold. Vacua for p = 3, 7 or 8 are completely excluded, and we obtain tight constraints for p = 4, 5, 6. This is achieved through the derivation of an enlightening expression for the four-dimensional Ricci scalar. Further interesting expressions and no-go theorems are obtained. The paper is self-contained so technical aspects, including conventions, might be of more general interest.

A preprint version of the article is available at ArXiv.

Change history

  • 13 March 2018

    In the trace of the Einstein equation along internal parallel at directions, namely equations (4.14) and (4.15), a few terms have been missed.

References

  1. [1]

    BICEP2, Planck collaboration, P.A.R. Ade et al., Joint Analysis of BICEP2/KeckArray and Planck data, Phys. Rev. Lett. 114 (2015) 101301 [arXiv:1502.00612] [INSPIRE].

  2. [2]

    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

  3. [3]

    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys. 594 (2016) A17 [arXiv:1502.01592] [INSPIRE].

  4. [4]

    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].

  5. [5]

    X. Chen, C. Dvorkin, Z. Huang, M.H. Namjoo and L. Verde, The future of primordial features with large-scale structure surveys, JCAP 11 (2016) 014 [arXiv:1605.09365] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    S.L. Parameswaran and I. Zavala, Prospects for primordial gravitational waves in string inflation, Int. J. Mod. Phys. D 25 (2016) 1644011 [arXiv:1606.02537] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    J.P. Conlon, The QCD axion and moduli stabilisation, JHEP 05 (2006) 078 [hep-th/0602233] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    D. Andriot, A no-go theorem for monodromy inflation, JCAP 03 (2016) 025 [arXiv:1510.02005] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  10. [10]

    I. Bena, M. Graña and N. Halmagyi, On the existence of meta-stable vacua in Klebanov-Strassler, JHEP 09 (2010) 087 [arXiv:0912.3519] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    I. Bena, J. Blabäck and D. Turton, Loop corrections to the antibrane potential, JHEP 07 (2016) 132 [arXiv:1602.05959] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    S.P. de Alwis, Constraints on Dbar uplifts, JHEP 11 (2016) 045 [arXiv:1605.06456] [INSPIRE].

    Google Scholar 

  13. [13]

    N. Cabo Bizet and S. Hirano, Revisiting constraints on uplifts to de Sitter vacua, arXiv:1607.01139 [INSPIRE].

  14. [14]

    S.R. Green, E.J. Martinec, C. Quigley and S. Sethi, Constraints on string cosmology, Class. Quant. Grav. 29 (2012) 075006 [arXiv:1110.0545] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    F.F. Gautason, D. Junghans and M. Zagermann, On cosmological constants from α-corrections, JHEP 06 (2012) 029 [arXiv:1204.0807] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    D. Kutasov, T. Maxfield, I. Melnikov and S. Sethi, Constraining de Sitter space in string theory, Phys. Rev. Lett. 115 (2015) 071305 [arXiv:1504.00056] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    C. Quigley, Gaugino condensation and the cosmological constant, JHEP 06 (2015) 104 [arXiv:1504.00652] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    G.W. Gibbons, Aspects of supergravity theories, XV GIFT Seminar on Supersymmetry and Supergravity, June 4–11, Gerona, Spain (1984).

  19. [19]

    B. de Wit, D.J. Smit and N.D. Hari Dass, Residual supersymmetry of compactified D = 10 supergravity, Nucl. Phys. B 283 (1987) 165 [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    P.K. Townsend, Cosmic acceleration and M-theory, hep-th/0308149 [INSPIRE].

  22. [22]

    M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary constraints on Type IIA string theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    S.S. Haque, G. Shiu, B. Underwood and T. Van Riet, Minimal simple de Sitter solutions, Phys. Rev. D 79 (2009) 086005 [arXiv:0810.5328] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  24. [24]

    C. Caviezel, P. Koerber, S. Körs, D. Lüst, T. Wrase and M. Zagermann, On the cosmology of Type IIA compactifications on SU(3)-structure manifolds, JHEP 04 (2009) 010 [arXiv:0812.3551] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    R. Flauger, S. Paban, D. Robbins and T. Wrase, Searching for slow-roll moduli inflation in massive type IIA supergravity with metric fluxes, Phys. Rev. D 79 (2009) 086011 [arXiv:0812.3886] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    U.H. Danielsson, S.S. Haque, G. Shiu and T. Van Riet, Towards classical de Sitter solutions in string theory, JHEP 09 (2009) 114 [arXiv:0907.2041] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    B. de Carlos, A. Guarino and J.M. Moreno, Flux moduli stabilisation, supergravity algebras and no-go theorems, JHEP 01 (2010) 012 [arXiv:0907.5580] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    C. Caviezel, T. Wrase and M. Zagermann, Moduli stabilization and cosmology of Type IIB on SU(2)-structure orientifolds, JHEP 04 (2010) 011 [arXiv:0912.3287] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. [29]

    T. Wrase and M. Zagermann, On classical de Sitter vacua in string theory, Fortsch. Phys. 58 (2010) 906 [arXiv:1003.0029] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    C.P. Burgess, A. Maharana, L. van Nierop, A.A. Nizami and F. Quevedo, On brane back-reaction and de Sitter solutions in higher-dimensional supergravity, JHEP 04 (2012) 018 [arXiv:1109.0532] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  31. [31]

    T. Van Riet, On classical de Sitter solutions in higher dimensions, Class. Quant. Grav. 29 (2012) 055001 [arXiv:1111.3154] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    F.F. Gautason, D. Junghans and M. Zagermann, Cosmological constant, near brane behavior and singularities, JHEP 09 (2013) 123 [arXiv:1301.5647] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  33. [33]

    R. Kallosh, A. Linde, B. Vercnocke and T. Wrase, Analytic classes of metastable de Sitter vacua, JHEP 10 (2014) 011 [arXiv:1406.4866] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  34. [34]

    E. Silverstein, Simple de Sitter solutions, Phys. Rev. D 77 (2008) 106006 [arXiv:0712.1196] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  35. [35]

    J. Blaback, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, Smeared versus localised sources in flux compactifications, JHEP 12 (2010) 043 [arXiv:1009.1877] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  36. [36]

    D. Junghans, Backreaction of localised sources in string compactifications, arXiv:1309.5990 [INSPIRE].

  37. [37]

    U.H. Danielsson, P. Koerber and T. Van Riet, Universal de Sitter solutions at tree-level, JHEP 05 (2010) 090 [arXiv:1003.3590] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. [38]

    U.H. Danielsson, S.S. Haque, P. Koerber, G. Shiu, T. Van Riet and T. Wrase, de Sitter hunting in a classical landscape, Fortsch. Phys. 59 (2011) 897 [arXiv:1103.4858] [INSPIRE].

  39. [39]

    L. Covi, M. Gomez-Reino, C. Gross, J. Louis, G.A. Palma and C.A. Scrucca, De Sitter vacua in no-scale supergravities and Calabi-Yau string models, JHEP 06 (2008) 057 [arXiv:0804.1073] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. [40]

    G. Shiu and Y. Sumitomo, Stability constraints on classical de Sitter vacua, JHEP 09 (2011) 052 [arXiv:1107.2925] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  41. [41]

    U.H. Danielsson, G. Shiu, T. Van Riet and T. Wrase, A note on obstinate tachyons in classical dS solutions, JHEP 03 (2013) 138 [arXiv:1212.5178] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  42. [42]

    D. Junghans, Tachyons in classical de Sitter vacua, JHEP 06 (2016) 132 [arXiv:1603.08939] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. [43]

    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  44. [44]

    D. Andriot, J. Blabäck and T. Van Riet, Minkowski flux vacua of type-II supergravities, Phys. Rev. Lett. 118 (2017) 011603 [arXiv:1609.00729] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    D. Andriot, E. Goi, R. Minasian and M. Petrini, Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory, JHEP 05 (2011) 028 [arXiv:1003.3774] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  46. [46]

    D. Andriot, New supersymmetric vacua on solvmanifolds, JHEP 02 (2016) 112 [arXiv:1507.00014] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  47. [47]

    L. Martucci and P. Smyth, Supersymmetric D-branes and calibrations on general N = 1 backgrounds, JHEP 11 (2005) 048 [hep-th/0507099] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  48. [48]

    G. Villadoro and F. Zwirner, On general flux backgrounds with localized sources, JHEP 11 (2007) 082 [arXiv:0710.2551] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  49. [49]

    J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. [50]

    E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].

    ADS  Google Scholar 

  51. [51]

    P. Koerber and L. Martucci, D-branes on AdS flux compactifications, JHEP 01 (2008) 047 [arXiv:0710.5530] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. [52]

    M. Berasaluce-González, G. Honecker and A. Seifert, Towards geometric D6-brane model building on non-factorisable toroidal \( {\mathrm{\mathbb{Z}}}_4 \) -orbifolds, JHEP 08 (2016) 062 [arXiv:1606.04926] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    D. Andriot, Heterotic string from a higher dimensional perspective, Nucl. Phys. B 855 (2012) 222 [arXiv:1102.1434] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  54. [54]

    E. Bergshoeff, R. Kallosh, T. Ort´in, D. Roest and A. Van Proeyen, New formulations of D = 10 supersymmetry and D8-O8 domain walls, Class. Quant. Grav. 18 (2001) 3359 [hep-th/0103233] [INSPIRE].

  55. [55]

    P. Koerber and D. Tsimpis, Supersymmetric sources, integrability and generalized-structure compactifications, JHEP 08 (2007) 082 [arXiv:0706.1244] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  56. [56]

    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, A scan for new N = 1 vacua on twisted tori, JHEP 05 (2007) 031 [hep-th/0609124] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. [57]

    E. Bergshoeff and P.K. Townsend, Super D-branes, Nucl. Phys. B 490 (1997) 145 [hep-th/9611173] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  58. [58]

    D. Lüst, F. Marchesano, L. Martucci and D. Tsimpis, Generalized non-supersymmetric flux vacua, JHEP 11 (2008) 021 [arXiv:0807.4540] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  59. [59]

    P. Koerber, Lectures on generalized complex geometry for physicists, Fortsch. Phys. 59 (2011) 169 [arXiv:1006.1536] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  60. [60]

    P. Koerber, Stable D-branes, calibrations and generalized Calabi-Yau geometry, JHEP 08 (2005) 099 [hep-th/0506154] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  61. [61]

    P. Koerber and L. Martucci, Deformations of calibrated D-branes in flux generalized complex manifolds, JHEP 12 (2006) 062 [hep-th/0610044] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  62. [62]

    F. Gmeiner and F. Witt, Calibrations and T-duality, Commun. Math. Phys. 283 (2008) 543 [math/0605710] [INSPIRE].

  63. [63]

    L. Martucci, Electrified branes, JHEP 02 (2012) 097 [arXiv:1110.0627] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  64. [64]

    D. Andriot and A. Betz, β-supergravity: a ten-dimensional theory with non-geometric fluxes and its geometric framework, JHEP 12 (2013) 083 [arXiv:1306.4381] [INSPIRE].

  65. [65]

    D. Andriot and A. Betz, NS-branes, source corrected Bianchi identities and more on backgrounds with non-geometric fluxes, JHEP 07 (2014) 059 [arXiv:1402.5972] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Johan Blåbäck.

Additional information

ArXiv ePrint: 1609.00385

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andriot, D., Blåbäck, J. Refining the boundaries of the classical de Sitter landscape. J. High Energ. Phys. 2017, 102 (2017). https://doi.org/10.1007/JHEP03(2017)102

Download citation

Keywords

  • Flux compactifications
  • Supergravity Models
  • Superstring Vacua