A method for model-independent measurement of the CKM angle β via time-dependent analysis of the B0+π, D → K s 0 π+π decays

Open Access
Regular Article - Theoretical Physics
  • 35 Downloads

Abstract

A new method for model-independent measurement of the CKM angle β is proposed, that employs time-dependent analysis of flavour-tagged B0Dπ+π decays with D meson decays into \( \mathcal{C}\mathcal{P} \)-specific and K s 0 π+π final states. This method can be used to measure the angle β with future data from the BelleII and LHCb experiments with the precision level of one degree.

Keywords

CP violation Heavy Quark Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    BaBar collaboration, B. Aubert et al., The BaBar detector, Nucl. Instrum. Meth. A 479 (2002) 1 [hep-ex/0105044] [INSPIRE].
  2. [2]
    A. Abashian et al., The Belle detector, Nucl. Instrum. Meth. A 479 (2002) 117 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE].
  4. [4]
    N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A.G. Cohen, D.B. Kaplan and A.E. Nelson, Progress in electroweak baryogenesis, Ann. Rev. Nucl. Part. Sci. 43 (1993) 27 [hep-ph/9302210] [INSPIRE].
  7. [7]
    A. Sakharov, The initial stage of an expanding universe and the appearance of a nonuniform distribution of matter, JETP 49 (1965) 345.Google Scholar
  8. [8]
    A.J. Buras and R. Fleischer, Quark mixing, CP-violation and rare decays after the top quark discovery, Adv. Ser. Direct. High Energy Phys. 15 (1998) 65 [hep-ph/9704376] [INSPIRE].
  9. [9]
    BaBar collaboration, B. Aubert et al., Observation of CP-violation in the B 0 meson system, Phys. Rev. Lett. 87 (2001) 091801 [hep-ex/0107013] [INSPIRE].
  10. [10]
    Belle collaboration, K. Abe et al., Observation of large CP-violation in the neutral B meson system, Phys. Rev. Lett. 87 (2001) 091802 [hep-ex/0107061] [INSPIRE].
  11. [11]
    BaBar collaboration, B. Aubert et al., Measurement of time-dependent CP asymmetry in \( {B}^0\to c\overline{c}{K}^{\left(\ast \right)0} \) decays, Phys. Rev. D 79 (2009) 072009 [arXiv:0902.1708] [INSPIRE].
  12. [12]
    I. Adachi et al., Precise measurement of the CP-violation parameter sin2 ϕ 1 in \( {B}^0\to \left(c\overline{c}\right){K}^0 \) decays, Phys. Rev. Lett. 108 (2012) 171802 [arXiv:1201.4643] [INSPIRE].
  13. [13]
    LHCb collaboration, Measurement of CP violation in B 0 → J/ψK S0 decays, Phys. Rev. Lett. 115 (2015) 031601 [arXiv:1503.07089] [INSPIRE].
  14. [14]
    Heavy Flavor Averaging Group (HFAG) collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2014, arXiv:1412.7515 [INSPIRE].
  15. [15]
    Belle, BaBar collaboration, A. Abdesselam et al., First observation of CP-violation in \( {\overline{B}}^0\to {D}_{\mathrm{CP}}^{\left(\ast \right)}{h}^0 \) decays by a combined time-dependent analysis of BaBar and Belle data, Phys. Rev. Lett. 115 (2015) 121604 [arXiv:1505.04147] [INSPIRE].
  16. [16]
    Y. Grossman and M.P. Worah, CP asymmetries in B decays with new physics in decay amplitudes, Phys. Lett. B 395 (1997) 241 [hep-ph/9612269] [INSPIRE].
  17. [17]
    K. De Bruyn and R. Fleischer, A roadmap to control penguin effects in B d0 → J/ψK S0 and B s0 → J/ψϕ, JHEP 03 (2015) 145 [arXiv:1412.6834] [INSPIRE].
  18. [18]
    A. Bondar, T. Gershon and P. Krokovny, A method to measure ϕ 1 using \( {\overline{B}}^0\to D{h}^0 \) with multibody D decay, Phys. Lett. B 624 (2005) 1 [hep-ph/0503174] [INSPIRE].
  19. [19]
    J. Charles, A. Le Yaouanc, L. Oliver, O. Pene and J.C. Raynal, B d0(t) → time dependent dalitz plots, CP-violating angles 2β, 2β + γ and discrete ambiguities, Phys. Lett. B 425 (1998) 375 [Erratum ibid. B 433 (1998) 441] [hep-ph/9801363] [INSPIRE].
  20. [20]
    T. Latham and T. Gershon, A method to measure cos(2β) using time-dependent Dalitz plot analysis of B 0D(CP )π + π , J. Phys. G 36 (2009) 025006 [arXiv:0809.0872] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    Belle collaboration, P. Krokovny et al., Measurement of the quark mixing parameter cos(2ϕ 1) using time-dependent Dalitz analysis of \( {\overline{B}}^0\to D\left[{K}_s^0{\pi}^{+}{\pi}^{-}\right]{h}^0 \), Phys. Rev. Lett. 97 (2006) 081801 [hep-ex/0605023] [INSPIRE].
  22. [22]
    BaBar collaboration, B. Aubert et al., Measurement of cos 2β in B 0D (∗) h 0 decays with a time-dependent Dalitz plot analysis of D → K S0 π + π , Phys. Rev. Lett. 99 (2007) 231802 [arXiv:0708.1544] [INSPIRE].
  23. [23]
    Belle collaboration, V. Vorobyev et al., Measurement of the CKM angle φ 1 in \( {B}^0\to {\overline{D}}^{\left(\ast \right)0}{h}^0 \) , \( {\overline{D}}^0\to {K}_S^0{\pi}^{+}{\pi}^{-} \) decays with time-dependent binned Dalitz plot analysis, Phys. Rev. D 94 (2016) 052004 [arXiv:1607.05813] [INSPIRE].
  24. [24]
    M. Roehrken, Search for invisible dark photon decays at BaBar & new CP violation results from combined BaBar+Belle measurements, talk given at the 52nd Recontres de Moriond (EW 2017), March 18-25, La Thuile, Italy (2017).Google Scholar
  25. [25]
    Belle-II collaboration, T. Abe et al., Belle II technical design report, arXiv:1011.0352 [KEK Report 2010-1] [INSPIRE].
  26. [26]
    A. Giri, Y. Grossman, A. Soffer and J. Zupan, Determining γ using B ±DK ± with multibody D decays, Phys. Rev. D 68 (2003) 054018 [hep-ph/0303187] [INSPIRE].
  27. [27]
    A. Bondar and A. Poluektov, Feasibility study of model-independent approach to ϕ 3 measurement using Dalitz plot analysis, Eur. Phys. J. C 47 (2006) 347 [hep-ph/0510246] [INSPIRE].
  28. [28]
    A. Bondar and A. Poluektov, The use of quantum-correlated D 0 decays for ϕ 3 measurement, Eur. Phys. J. C 55 (2008) 51 [arXiv:0801.0840] [INSPIRE].
  29. [29]
    A. Bondar, A. Poluektov and V. Vorobiev, Charm mixing in the model-independent analysis of correlated \( {D}^0{\overline{D}}^0 \) decays, Phys. Rev. D 82 (2010) 034033 [arXiv:1004.2350] [INSPIRE].
  30. [30]
    T. Gershon and A. Poluektov, Double Dalitz plot analysis of the decay B 0DK + pi , D → K S0 π + π , Phys. Rev. D 81 (2010) 014025 [arXiv:0910.5437] [INSPIRE].
  31. [31]
    S. Harnew and J. Rademacker, Charm mixing as input for model-independent determinations of the CKM phase γ, Phys. Lett. B 728 (2014) 296 [arXiv:1309.0134] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Harnew and J. Rademacker, Model independent determination of the CKM phase γ using input from \( {D}^0-{\overline{D}}^0 \) mixing, JHEP 03 (2015) 169 [arXiv:1412.7254] [INSPIRE].
  33. [33]
    D. Craik, T. Gershon and A. Poluektov, Optimising sensitivity to γ with B 0DK + π , D → K S0 π + π double Dalitz plot analysis, Phys. Rev. D 97 (2018) 056002 [arXiv:1712.07853] [INSPIRE].
  34. [34]
    A. Poluektov, Unbinned model-independent measurements with coherent admixtures of multibody neutral D meson decays, Eur. Phys. J. C 78 (2018) 121 [arXiv:1712.08326] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Belle, BaBar collaboration, A.J. Bevan et al., The physics of the B factories, Eur. Phys. J. C 74 (2014) 3026 [arXiv:1406.6311] [INSPIRE].
  36. [36]
    CLEO collaboration, J. Libby et al., Model-independent determination of the strong-phase difference between D 0 and \( {\overline{D}}^0\to {K}_{S,L}^0{h}^{+}{h}^{-}\left(h=\pi, K\right) \) and its impact on the measurement of the CKM angle γ/ϕ 3, Phys. Rev. D 82 (2010) 112006 [arXiv:1010.2817] [INSPIRE].
  37. [37]
    Belle collaboration, A. Poluektov et al., Evidence for direct CP-violation in the decay BD (∗) K, DK s π + π and measurement of the CKM phase ϕ 3, Phys. Rev. D 81 (2010) 112002 [arXiv:1003.3360] [INSPIRE].
  38. [38]
    LHCb collaboration, Measurement of CP violation in B 0D + D decays, Phys. Rev. Lett. 117 (2016) 261801 [arXiv:1608.06620] [INSPIRE].
  39. [39]
    LHCb collaboration, Dalitz plot analysis of \( {B}^0\to {\overline{D}}^0{\pi}^{+}{\pi}^{-} \) decays, Phys. Rev. D 92 (2015) 032002 [arXiv:1505.01710] [INSPIRE].
  40. [40]
    Belle collaboration, A. Kuzmin et al., Study of \( {\overline{B}}^0\to {D}^0{\pi}^{+}{\pi}^{-} \) decays, Phys. Rev. D 76 (2007) 012006 [hep-ex/0611054] [INSPIRE].
  41. [41]
    LHCb collaboration, Observation of CP-violation in B ±DK ± decays, Phys. Lett. B 712 (2012) 203 [Erratum ibid. B 713 (2012) 351] [arXiv:1203.3662] [INSPIRE].
  42. [42]
    LHCb collaboration, Measurement of the CKM angle γ using B ±DK ± with D → K S0 π + π , K S0 K + K decays, JHEP 10 (2014) 097 [arXiv:1408.2748] [INSPIRE].
  43. [43]
    LHC Experiments Committee, Framework TDR for the LHCb upgrade: technical design report, CERN-LHCC-2012-007 (2012).
  44. [44]
    G. Breit and E. Wigner, Capture of slow neutrons, Phys. Rev. 49 (1936) 519 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  45. [45]
    J. Blatt and V. Weisskopf, Theoretical nuclear physics, John Wiley & Sons, U.S.A. (1952).MATHGoogle Scholar
  46. [46]
    F. Von Hippel and C. Quigg, Centrifugal-barrier effects in resonance partial decay widths, shapes and production amplitudes, Phys. Rev. D 5 (1972) 624 [INSPIRE].ADSGoogle Scholar
  47. [47]
    M. Gronau, Y. Grossman, N. Shuhmaher, A. Soffer and J. Zupan, Using untagged B 0DK S to determine gamma, Phys. Rev. D 69 (2004) 113003 [hep-ph/0402055] [INSPIRE].
  48. [48]
    R. Fleischer, New, efficient and clean strategies to explore CP-violation through neutral B decays, Phys. Lett. B 562 (2003) 234 [hep-ph/0301255] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Budker Institute of Nuclear Physics SB RASNovosibirskRussia
  3. 3.P.N. Lebedev Physical Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations