Advertisement

Fermionic one-loop amplitudes of the RNS superstring

  • Seungjin Lee
  • Oliver Schlotterer
Open Access
Regular Article - Theoretical Physics
  • 45 Downloads

Abstract

We investigate massless n-point one-loop amplitudes of the open RNS superstring with two external fermions and determine their worldsheet integrands. The contributing correlation functions involving spin-1/2 and spin-3/2 operators from the fermion vertices are evaluated to any multiplicity. Moreover, we introduce techniques to sum these correlators over the spin structures of the worldsheet fermions such as to manifest all cancellations due to spacetime supersymmetry. These spin sums require generalizations of the Riemann identities among Jacobi theta functions, and the results can be expressed in terms of doubly-periodic functions known from the mathematics literature on elliptic multiple zeta values. On the boundary of moduli space, our spin-summed correlators specialize to compact representations of fermionic one-loop integrands for ambitwistor strings.

Keywords

Scattering Amplitudes Superstrings and Heterotic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 Supergravity as Limits of String Theories, Nucl. Phys. B 198 (1982) 474 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    N. Berkovits, Origin of the Pure Spinor and Green-Schwarz Formalisms, JHEP 07 (2015) 091 [arXiv:1503.03080] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    N. Berkovits, Untwisting the pure spinor formalism to the RNS and twistor string in a flat and AdS 5× S 5 background, JHEP 06 (2016) 127 [arXiv:1604.04617] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP 07 (2014) 048 [arXiv:1311.2564] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    N. Berkovits, Infinite Tension Limit of the Pure Spinor Superstring, JHEP 03 (2014) 017 [arXiv:1311.4156] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    T. Adamo, E. Casali and D. Skinner, Ambitwistor strings and the scattering equations at one loop, JHEP 04 (2014) 104 [arXiv:1312.3828] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T. Adamo and E. Casali, Scattering equations, supergravity integrands, and pure spinors, JHEP 05 (2015) 120 [arXiv:1502.06826] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    P. Ramond, Dual Theory for Free Fermions, Phys. Rev. D 3 (1971) 2415 [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    A. Neveu and J.H. Schwarz, Factorizable dual model of pions, Nucl. Phys. B 31 (1971) 86 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Neveu and J.H. Schwarz, Quark Model of Dual Pions, Phys. Rev. D 4 (1971) 1109 [INSPIRE].ADSGoogle Scholar
  12. [12]
    J. Cohn, D. Friedan, Z.-a. Qiu and S.H. Shenker, Covariant Quantization of Supersymmetric String Theories: The Spinor Field of the Ramond-Neveu-Schwarz Model, Nucl. Phys. B 278 (1986) 577 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    A. Tsuchiya, More on One Loop Massless Amplitudes of Superstring Theories, Phys. Rev. D 39 (1989) 1626 [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    S. Stieberger and T.R. Taylor, NonAbelian Born-Infeld action and type 1. — Heterotic duality 2: Nonrenormalization theorems, Nucl. Phys. B 648 (2003) 3 [hep-th/0209064] [INSPIRE].
  15. [15]
    J. Broedel, C.R. Mafra, N. Matthes and O. Schlotterer, Elliptic multiple zeta values and one-loop superstring amplitudes, JHEP 07 (2015) 112 [arXiv:1412.5535] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    F. Brown and A. Levin, Multiple Elliptic Polylogarithms, arXiv:1110.6917.
  17. [17]
    B. Enriquez, Analogues elliptiques des nombres multizétas, arXiv:1301.3042.
  18. [18]
    N. Berkovits, Pure spinor formalism as an N = 2 topological string, JHEP 10 (2005) 089 [hep-th/0509120] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-Point Superstring Disk Amplitude I. Pure Spinor Computation, Nucl. Phys. B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].
  20. [20]
    N. Berkovits, Multiloop amplitudes and vanishing theorems using the pure spinor formalism for the superstring, JHEP 09 (2004) 047 [hep-th/0406055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    N. Berkovits, Super-Poincaré covariant two-loop superstring amplitudes, JHEP 01 (2006) 005 [hep-th/0503197] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N. Berkovits and C.R. Mafra, Equivalence of two-loop superstring amplitudes in the pure spinor and RNS formalisms, Phys. Rev. Lett. 96 (2006) 011602 [hep-th/0509234] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    H. Gomez and C.R. Mafra, The Overall Coefficient of the Two-loop Superstring Amplitude Using Pure Spinors, JHEP 05 (2010) 017 [arXiv:1003.0678] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    H. Gomez and C.R. Mafra, The closed-string 3-loop amplitude and S-duality, JHEP 10 (2013) 217 [arXiv:1308.6567] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    H. Gomez, C.R. Mafra and O. Schlotterer, Two-loop superstring five-point amplitude and S-duality, Phys. Rev. D 93 (2016) 045030 [arXiv:1504.02759] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    C.R. Mafra and O. Schlotterer, One-loop superstring six-point amplitudes and anomalies in pure spinor superspace, JHEP 04 (2016) 148 [arXiv:1603.04790] [INSPIRE].ADSzbMATHGoogle Scholar
  27. [27]
    C.R. Mafra and O. Schlotterer, The double-copy structure of one-loop open-string amplitudes, arXiv:1711.09104 [INSPIRE].
  28. [28]
    C.R. Mafra and O. Schlotterer, to appear.Google Scholar
  29. [29]
    C.R. Mafra and O. Schlotterer, The Structure of n-Point One-Loop Open Superstring Amplitudes, JHEP 08 (2014) 099 [arXiv:1203.6215] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].ADSGoogle Scholar
  31. [31]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles in Arbitrary Dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles: Scalars, Gluons and Gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, Loop Integrands for Scattering Amplitudes from the Riemann Sphere, Phys. Rev. Lett. 115 (2015) 121603 [arXiv:1507.00321] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, One-loop amplitudes on the Riemann sphere, JHEP 03 (2016) 114 [arXiv:1511.06315] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, Two-Loop Scattering Amplitudes from the Riemann Sphere, Phys. Rev. D 94 (2016) 125029 [arXiv:1607.08887] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  36. [36]
    S. He, O. Schlotterer and Y. Zhang, New BCJ representations for one-loop amplitudes in gauge theories and gravity, arXiv:1706.00640 [INSPIRE].
  37. [37]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar
  38. [38]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    D. Friedan, S.H. Shenker and E.J. Martinec, Covariant Quantization of Superstrings, Phys. Lett. B 160 (1985) 55 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal Invariance, Supersymmetry and String Theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    R. Blumenhagen, D. Lüst and S. Theisen, Basic concepts of string theory, Springer (2013).Google Scholar
  42. [42]
    V.A. Kostelecky, O. Lechtenfeld, W. Lerche, S. Samuel and S. Watamura, Conformal Techniques, Bosonization and Tree Level String Amplitudes, Nucl. Phys. B 288 (1987) 173 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    I.G. Koh, W. Troost and A. Van Proeyen, Covariant Higher Spin Vertex Operators in the Ramond Sector, Nucl. Phys. B 292 (1987) 201 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    W.-Z. Feng, D. Lüst and O. Schlotterer, Massive Supermultiplets in Four-Dimensional Superstring Theory, Nucl. Phys. B 861 (2012) 175 [arXiv:1202.4466] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies And Phenomenology, Cambridge Monographs On Mathematical Physics, Cambridge University Press, Cambridge, U.K. (1987).Google Scholar
  46. [46]
    J.J. Atick and A. Sen, Covariant One Loop Fermion Emission Amplitudes in Closed String Theories, Nucl. Phys. B 293 (1987) 317 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    Z.H. Lin, L. Clavelli and S.T. Jones, Five Point Function In The Covariant Formulation Of The Type I Superstring Theory, Nucl. Phys. B 294 (1987) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    Z.-h. Lin, One Loop Closed String Five Particle Fermion Amplitudes In The Covariant Formulation, Int. J. Mod. Phys. A 5 (1990) 299 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    E. Witten, Superstring Perturbation Theory Revisited, arXiv:1209.5461 [INSPIRE].
  50. [50]
    A. Sen, Off-shell Amplitudes in Superstring Theory, Fortsch. Phys. 63 (2015) 149 [arXiv:1408.0571] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    E. D’Hoker and D.H. Phong, The Geometry of String Perturbation Theory, Rev. Mod. Phys. 60 (1988) 917 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    J.J. Atick and A. Sen, Correlation Functions of Spin Operators on a Torus, Nucl. Phys. B 286 (1987) 189 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    D. Haertl, O. Schlotterer and S. Stieberger, Higher Point Spin Field Correlators in D = 4 Superstring Theory, Nucl. Phys. B 834 (2010) 163 [arXiv:0911.5168] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    O. Schlotterer, Higher Loop Spin Field Correlators in D = 4 Superstring Theory, JHEP 09 (2010) 050 [arXiv:1001.3158] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    D. Haertl and O. Schlotterer, Higher Loop Spin Field Correlators in Various Dimensions, Nucl. Phys. B 849 (2011) 364 [arXiv:1011.1249] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    L. Kronecker, Zur Theorie der elliptischen Funktionen, Math. Werke IV (1881) 313.Google Scholar
  57. [57]
    J. Broedel, N. Matthes, G. Richter and O. Schlotterer, Twisted elliptic multiple zeta values and non-planar one-loop open-string amplitudes, arXiv:1704.03449 [INSPIRE].
  58. [58]
    M. Berg, I. Buchberger and O. Schlotterer, From maximal to minimal supersymmetry in string loop amplitudes, JHEP 04 (2017) 163 [arXiv:1603.05262] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    M. Bianchi and A.V. Santini, String predictions for near future colliders from one-loop scattering amplitudes around D-brane worlds, JHEP 12 (2006) 010 [hep-th/0607224] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    M. Bianchi and D. Consoli, Simplifying one-loop amplitudes in superstring theory, JHEP 01 (2016) 043 [arXiv:1508.00421] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    J.J. Atick and A. Sen, Spin Field Correlators on an Arbitrary Genus Riemann Surface and Nonrenormalization Theorems in String Theories, Phys. Lett. B 186 (1987) 339 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    P. Jordan and E. Wigner, Über das Paulische Äquivalenzverbot, Z. Phys. 47 (1928) 631.ADSCrossRefzbMATHGoogle Scholar
  63. [63]
    I.B. Frenkel and V.G. Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 62 (1980) 23.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    L. Álvarez-Gaumé, J.B. Bost, G.W. Moore, P.C. Nelson and C. Vafa, Bosonization on Higher Genus Riemann Surfaces, Commun. Math. Phys. 112 (1987) 503 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    L. Álvarez-Gaumé, G.W. Moore, P.C. Nelson, C. Vafa and J.b. Bost, Bosonization in Arbitrary Genus, Phys. Lett. B 178 (1986) 41 [INSPIRE].
  66. [66]
    L. Álvarez-Gaumé, G.W. Moore and C. Vafa, Theta Functions, Modular Invariance and Strings, Commun. Math. Phys. 106 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    L. Clavelli, P.H. Cox, B. Harms and H. Konno, Bosonization of odd spin structure amplitudes, Phys. Rev. D 43 (1991) 3998 [INSPIRE].ADSMathSciNetGoogle Scholar
  68. [68]
    J.D. Fay, “Theta Functions on Riemann Surfaces, Lect. Notes Math. 352, Springer (1973).Google Scholar
  69. [69]
    D. Mumford, M. Nori and P. Norman, Tata Lectures on Theta I, Progress in Mathematics, Birkhäuser Boston (1983).Google Scholar
  70. [70]
    D. Mumford, M. Nori and P. Norman, Tata Lectures on ThetaII, Progress in Mathematics, Birkhäuser Boston (1984).Google Scholar
  71. [71]
    K.A. Roehrig and D. Skinner, A Gluing Operator for the Ambitwistor String, JHEP 01 (2018) 069 [arXiv:1709.03262] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    E. D’Hoker and D.H. Phong, Two-loop superstrings VI: Non-renormalization theorems and the 4-point function, Nucl. Phys. B 715 (2005) 3 [hep-th/0501197] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  73. [73]
    A.G. Tsuchiya, On new theta identities of fermion correlation functions on genus g Riemann surfaces, arXiv:1710.00206 [INSPIRE].
  74. [74]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    O. Schlotterer, Higher Spin Scattering in Superstring Theory, Nucl. Phys. B 849 (2011) 433 [arXiv:1011.1235] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  76. [76]
    T. Banks, L.J. Dixon, D. Friedan and E.J. Martinec, Phenomenology and Conformal Field Theory Or Can String Theory Predict the Weak Mixing Angle?, Nucl. Phys. B 299 (1988) 613 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  77. [77]
    T. Banks and L.J. Dixon, Constraints on String Vacua with Space-Time Supersymmetry, Nucl. Phys. B 307 (1988) 93 [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    S. Ferrara, D. Lüst and S. Theisen, World Sheet Versus Spectrum Symmetries in Heterotic and Type II Superstrings, Nucl. Phys. B 325 (1989) 501 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  79. [79]
    N. Berkovits, Covariant quantization of the Green-Schwarz superstring in a Calabi-Yau background, Nucl. Phys. B 431 (1994) 258 [hep-th/9404162] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  80. [80]
    N. Berkovits, A new description of the superstring, in Proceedings, 8th J.A. Swieca Summer School on Particles and Fields: Rio de Janeiro, Brazil, February 5-18, 1995, pp. 390–418, hep-th/9604123 [INSPIRE].
  81. [81]
    N. Berkovits, C. Vafa and E. Witten, Conformal field theory of AdS background with Ramond-Ramond flux, JHEP 03 (1999) 018 [hep-th/9902098] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  82. [82]
    N. Berkovits, Quantization of the superstring with manifest U(5) superPoincaré invariance, Phys. Lett. B 457 (1999) 94 [hep-th/9902099] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  83. [83]
    N. Berkovits and B.C. Vallilo, One loop N point superstring amplitudes with manifest d = 4 supersymmetry, Nucl. Phys. B 624 (2002) 45 [hep-th/0110168] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Max-Planck-Institut für GravitationsphysikAlbert-Einstein-InstitutPotsdamGermany
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations