Measurement of differential cross sections in the kinematic angular variable ϕ* for inclusive Z boson production in pp collisions at \( \sqrt{s}=8 \) TeV
Measurements of differential cross sections dσ/dϕ* and double-differential cross sections d2σ/dϕ*d|y| for inclusive Z boson production are presented using the dielectron and dimuon final states. The kinematic observable ϕ* correlates with the dilepton transverse momentum but has better resolution, and y is the dilepton rapidity. The analysis is based on data collected with the CMS experiment at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb−1. The normalised cross section (1/σ) dσ/dϕ*, within the fiducial kinematic region, is measured with a precision of better than 0.5% for ϕ* < 1. The measurements are compared to theoretical predictions and they agree, typically, within few percent.
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
References
[1]
C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO, Phys. Rev.D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].
[2]
K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through O(αs2), Phys. Rev.D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE].
[3]
Y. Li and F. Petriello, Combining QCD and electroweak corrections to dilepton production in FEWZ, Phys. Rev.D 86 (2012) 094034 [arXiv:1208.5967] [INSPIRE].ADSGoogle Scholar
[4]
S. Alioli, C.W. Bauer, C. Berggren, F.J. Tackmann and J.R. Walsh, Drell-Yan production at NNLL’+NNLO matched to parton showers, Phys. Rev.D 92 (2015) 094020 [arXiv:1508.01475] [INSPIRE].ADSGoogle Scholar
[5]
CMS collaboration, Measurement of the differential and double-differential Drell-Yan cross sections in proton-proton collisions at\( \sqrt{s}=7 \)TeV, JHEP12 (2013) 030 [arXiv:1310.7291] [INSPIRE].
[6]
CMS collaboration, Measurements of differential and double-differential Drell-Yan cross sections in proton-proton collisions at 8 TeV, Eur. Phys. J.C 75 (2015) 147 [arXiv:1412.1115] [INSPIRE].
[7]
ATLAS collaboration, Measurement of the low-mass Drell-Yan differential cross section at\( \sqrt{s}=7 \)TeV using the ATLAS detector, JHEP06 (2014) 112 [arXiv:1404.1212] [INSPIRE].
[8]
ATLAS collaboration, Measurement of the high-mass Drell-Yan differential cross-section in pp collisions at\( \sqrt{s}=7 \)TeV with the ATLAS detector, Phys. Lett.B 725 (2013) 223 [arXiv:1305.4192] [INSPIRE].
[9]
ATLAS collaboration, Measurement of the transverse momentum distribution of Z/γ*bosons in proton-proton collisions at\( \sqrt{s}=7 \)TeV with the ATLAS detector, Phys. Lett.B 705 (2011) 415 [arXiv:1107.2381] [INSPIRE].
[10]
CMS collaboration, Measurement of the rapidity and transverse momentum distributions of Z bosons in pp collisions at\( \sqrt{s}=7 \)TeV, Phys. Rev.D 85 (2012) 032002 [arXiv:1110.4973] [INSPIRE].
[11]
LHCb collaboration, Measurement of the cross-section for Z → e+e−production in pp collisions at\( \sqrt{s}=7 \)TeV, JHEP02 (2013) 106 [arXiv:1212.4620] [INSPIRE].
[12]
CMS collaboration, Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton-proton collisions at 8 TeV, Phys. Lett.B 749 (2015) 187 [arXiv:1504.03511] [INSPIRE].
[13]
ATLAS collaboration, Measurement of the transverse momentum and ϕη*distributions of Drell-Yan lepton pairs in proton-proton collisions at\( \sqrt{s}=8 \)TeV with the ATLAS detector, Eur. Phys. J.C 76 (2016) 291 [arXiv:1512.02192] [INSPIRE].
[14]
S. Höche, Y. Li and S. Prestel, Drell-Yan lepton pair production at NNLO QCD with parton showers, Phys. Rev.D 91 (2015) 074015 [arXiv:1405.3607] [INSPIRE].ADSGoogle Scholar
[15]
J.C. Collins, Sudakov form-factors, Adv. Ser. Direct. High Energy Phys.5 (1989) 573 [hep-ph/0312336] [INSPIRE].
[16]
A. Banfi, S. Redford, M. Vesterinen, P. Waller and T.R. Wyatt, Optimisation of variables for studying dilepton transverse momentum distributions at hadron colliders, Eur. Phys. J.C 71 (2011) 1600 [arXiv:1009.1580] [INSPIRE].ADSCrossRefGoogle Scholar
[17]
A. Banfi, M. Dasgupta, S. Marzani and L. Tomlinson, Predictions for Drell-Yan ϕ*and QTobservables at the LHC, Phys. Lett.B 715 (2012) 152 [arXiv:1205.4760] [INSPIRE].ADSCrossRefGoogle Scholar
[18]
S. Marzani, QTand ϕ*observables in Drell-Yan processes, EPJ Web Conf.49 (2013) 14007 [INSPIRE].CrossRefGoogle Scholar
[19]
D0 collaboration, V.M. Abazov et al., Precise study of the Z/γ∗boson transverse momentum distribution in\( p\overline{p} \)collisions using a novel technique, Phys. Rev. Lett.106 (2011) 122001 [arXiv:1010.0262] [INSPIRE].
[20]
ATLAS collaboration, Measurement of angular correlations in Drell-Yan lepton pairs to probe Z/γ∗boson transverse momentum at\( \sqrt{s}=7 \)TeV with the ATLAS detector, Phys. Lett.B 720 (2013) 32 [arXiv:1211.6899] [INSPIRE].
[21]
CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST3 S08004 [INSPIRE].
CMS collaboration, Particle-flow reconstruction and global event description with the CMS detector, 2017 JINST12 P10003 [arXiv:1706.04965] [INSPIRE].
[26]
CMS collaboration, Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at\( \sqrt{s}=8 \)TeV, 2015 JINST10 P06005 [arXiv:1502.02701] [INSPIRE].
[27]
CMS collaboration, Performance of CMS muon reconstruction in pp collision events at\( \sqrt{s}=7 \)TeV, 2012 JINST7 P10002 [arXiv:1206.4071] [INSPIRE].
J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP07 (2002) 012 [hep-ph/0201195] [INSPIRE].
[31]
T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP05 (2006) 026 [hep-ph/0603175] [INSPIRE].
[32]
J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J.C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].ADSCrossRefGoogle Scholar
[33]
CMS collaboration, Study of the underlying event at forward rapidity in pp collisions at\( \sqrt{s}=0.9 \), 2.76 and 7TeV, JHEP04 (2013) 072 [arXiv:1302.2394] [INSPIRE].
P. Golonka, B. Kersevan, T. Pierzchala, E. Richter-Was, Z. Was and M. Worek, The Tauola photos F environment for the TAUOLA and PHOTOS packages: release II, Comput. Phys. Commun.174 (2006) 818 [hep-ph/0312240] [INSPIRE].
[36]
R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2.0: a code for hadronic Z production at next-to-next-to-leading order, Comput. Phys. Commun.182 (2011) 2388 [arXiv:1011.3540] [INSPIRE].
[37]
NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC run II, JHEP04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
[38]
M. Czakon and A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders, Comput. Phys. Commun.185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].ADSCrossRefGoogle Scholar
[39]
M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer and M. Wiedermann, HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR, Comput. Phys. Commun.182 (2011) 1034 [arXiv:1007.1327] [INSPIRE].ADSCrossRefMATHGoogle Scholar
[40]
P. Kant et al., HatHor for single top-quark production: updated predictions and uncertainty estimates for single top-quark production in hadronic collisions, Comput. Phys. Commun.191 (2015) 74 [arXiv:1406.4403] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth.A 506 (2003) 250 [INSPIRE].
[44]
CMS collaboration, Measurement of the inclusive W and Z production cross sections in pp collisions at\( \sqrt{s}=7 \)TeV, JHEP10 (2011) 132 [arXiv:1107.4789] [INSPIRE].
[45]
A. Bodek, A. van Dyne, J.Y. Han, W. Sakumoto and A. Strelnikov, Extracting muon momentum scale corrections for hadron collider experiments, Eur. Phys. J.C 72 (2012) 2194 [arXiv:1208.3710] [INSPIRE].ADSCrossRefGoogle Scholar
[46]
CMS collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state, Phys. Rev.D 89 (2014) 092007 [arXiv:1312.5353] [INSPIRE].
[47]
G. D’Agostini, A multidimensional unfolding method based on Bayes’ theorem, Nucl. Instrum. Meth.A 362 (1995) 487 [INSPIRE].ADSCrossRefGoogle Scholar
[48]
T. Adye, Unfolding algorithms and tests using RooUnfold, in Proceedings, PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, CERN, Geneva Switzerland, 17–20 January 2011, pg. 313 [arXiv:1105.1160] [INSPIRE].
[49]
CMS collaboration, CMS luminosity based on pixel cluster counting — Summer 2013 update, CMS-PAS-LUM-13-001, CERN, Geneva Switzerland, (2013).
[50]
CMS collaboration, Measurement of the\( t\overline{t} \)production cross section in the eμ channel in proton-proton collisions at\( \sqrt{s}=7 \)and 8 TeV, JHEP08 (2016) 029 [arXiv:1603.02303] [INSPIRE].
[51]
CMS collaboration, Measurement of the WZ production cross section in pp collisions at\( \sqrt{s}=7 \)and 8TeV and search for anomalous triple gauge couplings at\( \sqrt{s}=8 \)TeV, Eur. Phys. J.C 77 (2017) 236 [arXiv:1609.05721] [INSPIRE].
[52]
CMS collaboration, Measurement of the pp → ZZ production cross section and constraints on anomalous triple gauge couplings in four-lepton final states at\( \sqrt{s}=8 \)TeV, Phys. Lett.B 740 (2015) 250 [Erratum ibid.B 757 (2016) 569] [arXiv:1406.0113] [INSPIRE].
[53]
G. Nanava and Z. Was, How to use SANC to improve the PHOTOS Monte Carlo simulation of bremsstrahlung in leptonic W boson decays, Acta Phys. Polon.B 34 (2003) 4561 [hep-ph/0303260] [INSPIRE].
[54]
P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [INSPIRE].
[55]
S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefMATHGoogle Scholar
S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
G.A. Ladinsky and C.P. Yuan, The nonperturbative regime in QCD resummation for gauge boson production at hadron colliders, Phys. Rev.D 50 (1994) R4239 [hep-ph/9311341] [INSPIRE].
[63]
C. Balázs and C.P. Yuan, Soft gluon effects on lepton pairs at hadron colliders, Phys. Rev.D 56 (1997) 5558 [hep-ph/9704258] [INSPIRE].
[64]
F. Landry, R. Brock, P.M. Nadolsky and C.P. Yuan, Fermilab Tevatron run-1 Z boson data and the Collins-Soper-Sterman resummation formalism, Phys. Rev.D 67 (2003) 073016 [hep-ph/0212159] [INSPIRE].
[65]
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
M. Botje et al., The PDF4LHC working group interim recommendations, arXiv:1101.0538 [INSPIRE].
[69]
L. Lyons, D. Gibaut and P. Clifford, How to combine correlated estimates of a single physical quantity, Nucl. Instrum. Meth.A 270 (1988) 110 [INSPIRE].ADSCrossRefGoogle Scholar
[70]
A. Valassi, Combining correlated measurements of several different physical quantities, Nucl. Instrum. Meth.A 500 (2003) 391 [INSPIRE].ADSCrossRefGoogle Scholar