N = 2 dilaton Weyl multiplet in 4D supergravity

  • Daniel Butter
  • Subramanya Hegde
  • Ivano Lodato
  • Bindusar Sahoo
Open Access
Regular Article - Theoretical Physics
  • 13 Downloads

Abstract

We construct the dilaton Weyl multiplet for N = 2 conformal supergravity in four dimensions. Beginning from an on-shell vector multiplet coupled to the standard Weyl multiplet, the equations of motion can be used to eliminate the supergravity auxiliary fields, following a similar pattern as in five and six dimensions. The resulting 24+24 component multiplet includes two gauge vectors and a gauge two-form and provides a variant formulation of N = 2 conformal supergravity. We also show how this dilaton Weyl multiplet is contained in the minimal 32+32 Poincaré supergravity multiplet introduced by Müller [1] in superspace.

Keywords

Extended Supersymmetry Supergravity Models Superspaces 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Muller, Minimal N = 2 supergravity in superspace, Nucl. Phys. B 282 (1987) 329 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    E. Bergshoeff, M. de Roo and B. de Wit, Extended conformal supergravity, Nucl. Phys. B 182 (1981) 173 [INSPIRE].
  3. [3]
    B. de Wit, S. Katmadas and M. van Zalk, New supersymmetric higher-derivative couplings: full N = 2 superspace does not count!, JHEP 01 (2011) 007 [arXiv:1010.2150] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    D. Butter, B. de Wit, S.M. Kuzenko and I. Lodato, New higher-derivative invariants in N = 2 supergravity and the Gauss-Bonnet term, JHEP 12 (2013) 062 [arXiv:1307.6546] [INSPIRE].
  5. [5]
    S.M. Kuzenko and J. Novak, On curvature squared terms in N = 2 supergravity, Phys. Rev. D 92 (2015) 085033 [arXiv:1507.04922] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    K. Hanaki, K. Ohashi and Y. Tachikawa, Supersymmetric completion of an R 2 term in five-dimensional supergravity, Prog. Theor. Phys. 117 (2007) 533 [hep-th/0611329] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    M. Ozkan and Y. Pang, All off-shell R 2 invariants in five dimensional \( \mathcal{N}=2 \) supergravity, JHEP 08 (2013) 042 [arXiv:1306.1540] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  8. [8]
    D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in five dimensions: new approach and applications, JHEP 02 (2015) 111 [arXiv:1410.8682] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    T. Fujita and K. Ohashi, Superconformal tensor calculus in five-dimensions, Prog. Theor. Phys. 106 (2001) 221 [hep-th/0104130] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    N. Banerjee, B. de Wit and S. Katmadas, The off-shell 4D/5D connection, JHEP 03 (2012) 061 [arXiv:1112.5371] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    N. Banerjee, B. de Wit and S. Katmadas, The off-shell c-map, JHEP 01 (2016) 156 [arXiv:1512.06686] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    E. Bergshoeff, E. Sezgin and A. Van Proeyen, Superconformal tensor calculus and matter couplings in six-dimensions, Nucl. Phys. B 264 (1986) 653 [Erratum ibid. B 598 (2001) 667] [INSPIRE].
  13. [13]
    E. Bergshoeff et al., Weyl multiplets of N = 2 conformal supergravity in five-dimensions, JHEP 06 (2001) 051 [hep-th/0104113] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    T. Kugo and K. Ohashi, Gauge and nongauge tensor multiplets in 5D conformal supergravity, Prog. Theor. Phys. 108 (2003) 1143 [hep-th/0208082] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    S.M. Kuzenko, On compactified harmonic/projective superspace, 5D superconformal theories and all that, Nucl. Phys. B 745 (2006) 176 [hep-th/0601177] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    S.M. Kuzenko and J. Novak, On supersymmetric Chern-Simons-type theories in five dimensions, JHEP 02 (2014) 096 [arXiv:1309.6803] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    W. Siegel, Curved extended superspace from Yang-Mills theory a la strings, Phys. Rev. D 53 (1996) 3324 [hep-th/9510150] [INSPIRE].
  18. [18]
    S. Hegde, I. Lodato and B. Sahoo, A 24 + 24 real scalar multiplet in four dimensional N = 2 conformal supergravity, arXiv:1712.02309 [INSPIRE].
  19. [19]
    B. de Wit, J.W. van Holten and A. Van Proeyen, Transformation rules of N = 2 supergravity multiplets, Nucl. Phys. B 167 (1980) 186 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    D. Butter, N = 2 conformal superspace in four dimensions, JHEP 10 (2011) 030 [arXiv:1103.5914] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Super-Weyl invariance in 5D supergravity, JHEP 04 (2008) 032 [arXiv:0802.3953] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).MATHGoogle Scholar
  23. [23]
    D. Butter, B. de Wit and I. Lodato, Non-renormalization theorems and N = 2 supersymmetric backgrounds, JHEP 03 (2014) 131 [arXiv:1401.6591] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Cvitan, P. Dominis Prester and A. Ficnar, α2 -corrections to extremal dyonic black holes in heterotic string theory, JHEP 05 (2008) 063 [arXiv:0710.3886] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and AstronomyTexas A&M UniversityCollege StationU.S.A.
  2. 2.Indian Institute of Science Education and ResearchThiruvananthapuramIndia
  3. 3.Indian Institute of Science Education and ResearchPuneIndia
  4. 4.Department of Physics and Center for Field Theory and Particle PhysicsFudan UniversityShanghaiChina

Personalised recommendations