Does boundary quantum mechanics imply quantum mechanics in the bulk?

  • Daniel KabatEmail author
  • Gilad Lifschytz
Open Access
Regular Article - Theoretical Physics


Perturbative bulk reconstruction in AdS/CFT starts by representing a free bulk field ϕ(0) as a smeared operator in the CFT. A series of 1/N corrections must be added to ϕ(0) to represent an interacting bulk field ϕ. These corrections have been determined in the literature from several points of view. Here we develop a new perspective. We show that correlation functions involving ϕ(0) suffer from ambiguities due to analytic continuation. As a result ϕ(0) fails to be a well-defined linear operator in the CFT. This means bulk reconstruction can be understood as a procedure for building up well-defined operators in the CFT which thereby singles out the interacting field ϕ. We further propose that the difficulty with defining ϕ(0) as a linear operator can be re-interpreted as a breakdown of associativity. Presumably ϕ(0) can only be corrected to become an associative operator in perturbation theory. This suggests that quantum mechanics in the bulk is only valid in perturbation theory around a semiclassical bulk geometry.


AdS-CFT Correspondence Models of Quantum Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    D. Kabat, G. Lifschytz and D.A. Lowe, Constructing local bulk observables in interacting AdS/CFT, Phys. Rev. D 83 (2011) 106009 [arXiv:1102.2910] [INSPIRE].ADSGoogle Scholar
  3. [3]
    T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].
  4. [4]
    V.K. Dobrev, Intertwining operator realization of the AdS/CFT correspondence, Nucl. Phys. B 553 (1999) 559 [hep-th/9812194] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    I. Bena, On the construction of local fields in the bulk of AdS 5 and other spaces, Phys. Rev. D 62 (2000) 066007 [hep-th/9905186] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: A Boundary view of horizons and locality, Phys. Rev. D 73 (2006) 086003 [hep-th/0506118] [INSPIRE].ADSGoogle Scholar
  7. [7]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev. D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: A Holographic description of the black hole interior, Phys. Rev. D 75 (2007) 106001 [Erratum ibid. D 75 (2007) 129902] [hep-th/0612053] [INSPIRE].
  9. [9]
    H. Verlinde, Poking Holes in AdS/CFT: Bulk Fields from Boundary States, arXiv:1505.05069 [INSPIRE].
  10. [10]
    M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, Continuous Multiscale Entanglement Renormalization Ansatz as Holographic Surface-State Correspondence, Phys. Rev. Lett. 115 (2015) 171602 [arXiv:1506.01353] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    Y. Nakayama and H. Ooguri, Bulk Locality and Boundary Creating Operators, JHEP 10 (2015) 114 [arXiv:1507.04130] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    D. Kabat and G. Lifschytz, Local bulk physics from intersecting modular Hamiltonians, JHEP 06 (2017) 120 [arXiv:1703.06523] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP 07 (2017) 151 [arXiv:1704.05464] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    J. Cotler, P. Hayden, G. Salton, B. Swingle and M. Walter, Entanglement Wedge Reconstruction via Universal Recovery Channels, arXiv:1704.05839 [INSPIRE].
  15. [15]
    D. Kabat and G. Lifschytz, Bulk equations of motion from CFT correlators, JHEP 09 (2015) 059 [arXiv:1505.03755] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    I. Heemskerk, D. Marolf, J. Polchinski and J. Sully, Bulk and Transhorizon Measurements in AdS/CFT, JHEP 10 (2012) 165 [arXiv:1201.3664] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Lewkowycz, G.J. Turiaci and H. Verlinde, A CFT Perspective on Gravitational Dressing and Bulk Locality, JHEP 01 (2017) 004 [arXiv:1608.08977] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Guica, Bulk fields from the boundary OPE, arXiv:1610.08952 [INSPIRE].
  19. [19]
    N. Anand, H. Chen, A.L. Fitzpatrick, J. Kaplan and D. Li, An Exact Operator That Knows Its Location, JHEP 02 (2018) 012 [arXiv:1708.04246] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    H. Chen, A.L. Fitzpatrick, J. Kaplan and D. Li, The AdS 3 Propagator and the Fate of Locality, arXiv:1712.02351 [INSPIRE].
  21. [21]
    D. Kabat and G. Lifschytz, CFT representation of interacting bulk gauge fields in AdS, Phys. Rev. D 87 (2013) 086004 [arXiv:1212.3788] [INSPIRE].ADSGoogle Scholar
  22. [22]
    D. Kabat and G. Lifschytz, Decoding the hologram: Scalar fields interacting with gravity, Phys. Rev. D 89 (2014) 066010 [arXiv:1311.3020] [INSPIRE].ADSGoogle Scholar
  23. [23]
    I. Heemskerk, Construction of Bulk Fields with Gauge Redundancy, JHEP 09 (2012) 106 [arXiv:1201.3666] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D. Kabat, G. Lifschytz, S. Roy and D. Sarkar, Holographic representation of bulk fields with spin in AdS/CFT, Phys. Rev. D 86 (2012) 026004 [arXiv:1204.0126] [INSPIRE].ADSGoogle Scholar
  25. [25]
    D. Sarkar and X. Xiao, Holographic Representation of Higher Spin Gauge Fields, Phys. Rev. D 91 (2015) 086004 [arXiv:1411.4657] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    A. Almheiri, X. Dong and D. Harlow, Bulk Locality and Quantum Error Correction in AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    E. Mintun, J. Polchinski and V. Rosenhaus, Bulk-Boundary Duality, Gauge Invariance and Quantum Error Corrections, Phys. Rev. Lett. 115 (2015) 151601 [arXiv:1501.06577] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten Diagrams Revisited: The AdS Geometry of Conformal Blocks, JHEP 01 (2016) 146 [arXiv:1508.00501] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, A Stereoscopic Look into the Bulk, JHEP 07 (2016) 129 [arXiv:1604.03110] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    B. Carneiro da Cunha and M. Guica, Exploring the BTZ bulk with boundary conformal blocks, arXiv:1604.07383 [INSPIRE].
  32. [32]
    J. de Boer, F.M. Haehl, M.P. Heller and R.C. Myers, Entanglement, holography and causal diamonds, JHEP 08 (2016) 162 [arXiv:1606.03307] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    D. Kabat and G. Lifschytz, Locality, bulk equations of motion and the conformal bootstrap, JHEP 10 (2016) 091 [arXiv:1603.06800] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An Apologia for Firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    K. Papadodimas and S. Raju, An Infalling Observer in AdS/CFT, JHEP 10 (2013) 212 [arXiv:1211.6767] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    K. Papadodimas and S. Raju, State-Dependent Bulk-Boundary Maps and Black Hole Complementarity, Phys. Rev. D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].ADSGoogle Scholar
  38. [38]
    K. Papadodimas and S. Raju, Remarks on the necessity and implications of state-dependence in the black hole interior, Phys. Rev. D 93 (2016) 084049 [arXiv:1503.08825] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    D. Berenstein and A. Miller, Can Topology and Geometry be Measured by an Operator Measurement in Quantum Gravity?, Phys. Rev. Lett. 118 (2017) 261601 [arXiv:1605.06166] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    D.L. Jafferis, Bulk reconstruction and the Hartle-Hawking wavefunction, arXiv:1703.01519 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics and Astronomy, Lehman CollegeCity University of New YorkBronxU.S.A.
  2. 2.Department of Mathematics and Haifa Research Center for Theoretical Physics and AstrophysicsUniversity of HaifaHaifaIsrael

Personalised recommendations